透過您的圖書館登入
IP:3.239.57.87
  • 學位論文

以高分子壓電薄膜陣列操控微液珠之數位微流體晶片之研發

Research and Development of Digital Microfluidic Chip - Thin-film piezoelectric polymer array for micro-droplet manipulations

指導教授 : 李世光
共同指導教授 : 許聿翔
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


微流體技術與晶片實驗室這個概念開啟了在生物醫學檢測、分析化學等領域一個新的方向。微流體技術是將生物化學之樣本或是檢體縮小至微米甚至是奈米的尺度來檢視,這樣的微縮化,帶來了更簡易的設備,節省檢體,加速檢測時間,更便利於反應結果判讀等新的益處。而數位微流體是微流體系統之一個分支,其主要概念便是將原本連續性的微流體非連續化,單獨將非連續的流體單元視為獨立可操作與反應的微液珠單元。因此,如何開發在微觀的世界中操縱控制微液珠的各種不同方法就成為頂尖研究團隊關心的課題。本論文主要是在以高分子壓電材料為基礎,開發一種全新的數位微液珠推動方式以及數位微流體晶片的製程,開發出薄膜式壓電致動器陣列,此方法利用9um極薄的高分子壓電薄膜PVDF製成的微懸臂樑陣列來提供推動液珠的動力,利用共振模態以及空間位置改片而造成的表面張力改變現象趨動液珠。發展一低成本薄膜製程,應用商業化薄膜切割機,在最高的機器解析度10μm的精度下,快速的完成原型製造,並且在此數位微流體晶片的製程上實現了不需要昂貴費時的無塵室微機電製程的另一種製造方式,實現了低成本,快速簡易的製程。探討了各項壓電懸臂樑形式與微液珠的關係,實現了一種全新的微液珠推動方式。

並列摘要


The concept of Microfluidics and Lab on a Chip create a new tool to solve biological, chemical and physical problems in micro-scale domain. Moreover, digital microfluidics have introduce a more delicate concept for simplify the analytical platform and experimental equipment, saving samples and shorten the testing time. Hence, how to manipulate micro-droplets for this digital microfluidics application is an important task for researchers in this advancing field. In this thesis, a new platform of digital micro-droplets chip was developed. Using a PVDF piezoelectric polymer with very thin thickness in 9μm to create an 8x8 bimorph cantilever beam array for the driving force of micro-droplets. A fast prototyping fabrication process for thin-film micro-fabrication process was also developed. This method is a low cost process with minimal clean room fabrication processes and traditional semiconductor materials. The performance of micro-cantilevers was studied and the feasibility of thin-film piezoelectric polymer array were also verified. It was demonstrated that a 0.2μL and 0.5μL micro-droplets could be displaced for 273 μm and 54 μm, respectively in this thesis.

參考文獻


1. Srinivasan, V., V.K. Pamula, and R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip, 2004. 4(4): p. 310-315.
2. Chin, C.D., V. Linder, and S.K. Sia, Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip, 2007. 7(1): p. 41-57.
3. Burns, M.A., et al., An integrated nanoliter DNA analysis device. Science, 1998. 282(5388): p. 484-487.
4. Rivet, C., et al., Microfluidics for medical diagnostics and biosensors. Chemical Engineering Science, 2011. 66(7): p. 1490-1507.
5. Dittrich, P.S. and A. Manz, Lab-on-a-chip: microfluidics in drug discovery. Nature Reviews Drug Discovery, 2006. 5(3): p. 210-218.

延伸閱讀