透過您的圖書館登入
IP:52.14.221.113
  • 學位論文

製備氧化還原高分子奈米複合材料於生物感測器與生物燃料電池之應用

Preparation of Redox Polymer Nanocomposites for Application in Biosensors and Biofuel Cells

指導教授 : 何國川
共同指導教授 : 陳林祈(Lin-Chi Chen)

摘要


本論文主要目的為製備氧化還原高分子及其複合材料,並應用於生物感測器與生物燃料電池之電極修飾,期望提升生物感測器之靈敏度(sensitivity)與選擇性(selectivity)以及生物燃料電池之輸出功率。 第一部分(第三章),本論文使用電化學聚合方法將亞甲基藍(methylene blue)單體聚合在以多壁奈米碳管(Muitl-walled carbon nanotubes, MWCNTs)修飾之自製網印碳電極表面,在MWCNTs上形成片狀堆積之聚亞甲基藍(poly(methylene blue), PMB)薄膜,大幅提昇PMB之沉積量與表面積。此外,亦藉著MWCNTs與網印碳電極表面進行連結,提升電子傳遞的效率。在應用方面,先將PMB/MWCNTs修飾電極用於煙醯胺腺嘌呤二核苷酸(Nicotinamide adenine dinucleotide, reduced form, NADH)感測器,測試並分析此高分子複合材料對於NADH電催化性之影響;再將葡萄糖脫氫酵素(glucose dehydrogenase, GDH)固定於PMB/MWCNTs修飾電極,搭配另一氧化還原對(I-/I3-)做為陰極,構成一新型葡萄糖生物燃料電池系統,並將此系統進行最佳化。 第二部分(第四章),本論文利用化學聚合法將對苯二酚(hydroquinone)與幾丁聚醣(chitosan)共聚,形成一氧化還原高分子凝膠(redox polymer gel, poly(hydroquinone) –chitosan,PHQ–CS),此高分子凝膠結構中具有許多胺基(amino group),有利於PHQ與葡萄糖氧化酵素(glucose oxidase, GOD)之包覆固定。此外,PHQ–CS亦可作為GOD之電子媒介(electron mediator),在酵素活性中心與電極表面構成一個電子通路。因此我們將PHQ–CS應用於葡萄糖酵素燃料電池之陽極製備,並嘗試在PHQ–CS之前驅物中摻雜不同比例的MWCNTs,可以有效提升酵素電極之電化學活性,進而增進酵素燃料電池的輸出功率。 第三部分(第五章),本論文對一樹狀高分子聚乙烯亞胺(branched polyethyleneimine, BPEI)進行改質,將二茂鐵(ferrocene, Fc)以化學鍵結方式接上PEI之側鏈,並調控合成參數製備出不同尺寸之BPEI奈米球。由於BPEI–Fc具有良好的親水性,且在中性環境下帶正電荷,可在水溶液中與帶負電荷的酵素形成分散均勻的溶液,有助於酵素固定化之應用。此外,BPEI–Fc在改質後具有較低的鏈彈性(chain flexibility),有利於和其他材料的混合,本論文引入另一導電高分子聚二氧乙基噻吩聚苯乙烯磺酸poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS),形成高分子複合材料,並以葡萄糖感測器做為分析平台。實驗結果顯示有加入PEDOT:PSS之電極對於葡萄糖之偵測靈敏度有顯著的提升(由27 μA mM-1 cm-2提升至66 μA mM-1 cm-2),對於葡萄糖也具有更強的親和力。 第四部分(第六章),本論文以經硼酸根修飾之聚苯胺(poly(3–aminophenylboronic acid, PAPBA)為主體,嘗試開發電流式糖化血色素之感測器(amperometric glycated hemoglobin sensor)。利用化學聚合法將一帶有硼酸根(boronic acid)之苯胺衍生物聚合,搭配NafionR以drop coating將此高分子塗佈於商用三極式網印碳電極,即完成電極製備。當糖化血色素(Glycated hemoglobin, HbA1c)與電極上之硼酸根形成化學鍵結後,HbA1c的蛋白質結構會阻擋導電高分子薄膜中離子的嵌入與脫出,此現象反應於PAPBA的氧化還原電流。因此,本論文利用此機制來實現對於HbA1c的電化學偵測。在實驗的部分,除了分析電化學參數外,為了了解在PAPBA薄膜上微觀的質量變化,本論文也利用電化學石英壓電晶體微天平(electrochemical quartz crystal microbalance, EQCM)來進行觀測。

並列摘要


In this dissertation, we synthesized redox polymers and polymer composites for the electrode modification. Then, we applied these redox polymers to the biosensors and biofuel cells (BFCs), in order to improve the sensitivity and selectivity of the biosensor or the power output of the BFCs. In the first part (in Chapter 3), poly(methylene blue) (PMB) was grown on the screen–printed carbon paste electrode (SPCE), which is modified with multi–walled carbon nanotubes (MWCNTs), by electrodeposition. We find that MWCNTs are capable of significantly increasing the deposition amount and the surface area of PMB. In addition, the electron transfer rate and also be improved by incorporating MWCNTs. For the applications, PMB/MWCNTs/SPCE was used as the Nicotinamide adenine dinucleotide (reduced form, NADH) sensor, and the electrocatalysis of NADH oxidation was also investigated. After combined with glucose dehydrogenase (GDH), this material could be used for the bioanode of the glucose bio–battery’s prototype. The choice of the iodide/tri–iodide redox couple eliminates the dependence of oxygen for this bio–battery. In the second part (in Chapter 4), a redox hydrogel polyhydroquinone–chitosan (PHQ–CS) was prepared by chemical polymerization and used to entrap the GOD and the PHQ in the matrix of chitosan. In addition, the PHQ–CS could work as the electron mediator of GOx, and thus the PHQ–CS could be applied to the fabrication of the bioanodes for the glucose BFCs system. To further improve the electrocatalytic efficiency of bioanode, carboxyl–functionalized MWCNTs were introduced during the preparation of the redox PHQ–CS hydrogel. In the third part (in Chapter 5), the redox polymer nanobeads containing branched polyethylenimine (BPEI) and ferrocene (Fc) redox mediators was prepared. The size of the redox polymer nanobeads would be affect by different conditions of the fabrication process. With good hydrophilicity, the BPEI–Fc nanobeads can form a well–dispersed aqueous solution. Under the neutral pH condition, glucose oxidase (GOx) is negatively charged and BPEI–Fc bears positive charges. Thus, GOx and BPEI–Fc can be blended well by electrostatic affinity. Besides, with lower chain flexibility the BPEI nanobeads can maintain their morphology and form nanocomposites with other materials. For instance, after further incorporation of conductive poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), we fabricate BPEI–Fc/PEDOT:PSS/GOx/SPCE that shows high glucose oxidation currents. The fourth part (in Chapter 6), poly(3–aminophenylboronic acid) (PAPBA), which not only possesses the redox activity but also the boronic acid functionality, was prepared and used for the development of an amperometric Glycated hemoglobin (HbA1c) sensor. When the HbA1c was covalently bounded to the conducting polymer film, the current response can represent the amount of the HbA1c adsorbed. Therefore, the HbA1c concentration in the bulk solution can be estimated. To further investigate the mechanism of the HbA1c sensor, in situ study of the mass change of the PAPBA was also carried out by using an electrochemical quartz crystal microbalance (EQCM) experiment.

參考文獻


[1] R. Gracia, D. Mecerreyes. 2013. Polymers with redox properties: materials for batteries, biosensors and more. Polymer Chemistry, 4(7), 2206-2214.
[2] P. Novak, K. Muller, K.S.V. Santhanam, O. Haas. 1997. Electrochemically active polymers for rechargeable batteries. Chemical Reviews, 97(1), 207-281.
[3] X. Li, H. Zhang, Z. Mai, H. Zhang, I. Vankelecom. 2011. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy & Environmental Science, 4(4), 1147-1160.
[4] M. Ates, A.S. Sarac. 2009. Conducting polymer coated carbon surfaces and biosensor applications. Progress in Organic Coatings, 66(4), 337-358.
[5] S. Geetha, C.R.K. Rao, M. Vijayan, D.C. Trivedi. 2006. Biosensing and drug delivery by polypyrrole. Analytica Chimica Acta, 568(1-2), 119-125.

延伸閱讀