透過您的圖書館登入
IP:3.88.254.50
  • 學位論文

銅/釕化學機械研磨之研磨墊與研磨液的電化學研究

The Electrochemical Study of Polish Pad and Slurry on Cu/Ru Chemical Mechanical Polishing

指導教授 : 顏溪成

摘要


本研究主要探討銅及釕化學機械研磨在雙氧水系統以及過硫酸銨系統下比較以及使用不同研磨墊的研磨情況。首先利用電化學還原釕在白金旋轉電極上,釕的厚度大約為600 nm,接著在不同環境下進行銅/釕化學機械研磨方面,除了利用直流極化技術外,也使用重量分析法計算研磨速率,更透過原子力學顯微鏡(AFM)了解研磨後的表面平坦度。實驗結果顯示,在過硫酸銨的系統下,利用菜瓜布或研磨墊(No. 40-7218,Buehler),研磨液為pH 6的情況皆為最佳,在使用菜瓜布情況下,金屬銅與釕的研磨速率,分別為365.3 nm/min及92.37 nm/min,研磨選擇率為3.95,而且研磨後,銅的表面粗糙度下降至21.25 nm;釕的表面粗糙度下降至43.53 nm;在使用研磨墊(No. 40-7218,Buehler)情況下,金屬銅與釕的研磨速率,分別為355.4 nm/min及63.95 nm/min,研磨選擇率為5.55,銅的表面粗糙度下降至14.34 nm;釕的表面粗糙度下降至19.03 nm。 由於過硫酸銨溶液含有胺離子容易與金屬銅錯合物螯合而加速溶解速率,無法得到良好的銅釕移除選擇率,因此選擇使用雙氧水溶液做為研磨液,在雙氧水系統下,利用dish scrubber研磨,研磨液為濃度5 wt%的情況為最佳,金屬銅與釕的研磨速率,分別為207.3 nm/min及85.26 nm/min,研磨選擇率為2.43,至於表面粗糙度方面,銅的表面粗糙度下降至16.85 nm;釕的表面粗糙度下降至32.06 nm。

關鍵字

化學機械研磨

並列摘要


In this study the chemical mechanical polishing of copper and ruthenium in hydrogen peroxide and ammonium persulfate system has been investigated. Hydrogen peroxide or ammonium persulfate was employed as an oxidant in slurries. Either dish scrubber or regular polishing pad was used as polish pad. First, ruthenium was plated on a rotating disk electrode in a three electrode-system containing ruthenium chloride, and it would be used for chemical mechanical polishing. From the chemical mechanical polishing experiments, the experimental results showed that ammonium persulfate-based slurries at pH 6 had the best performance. Removal rate for copper and ruthenium with abrasion by dish scrubber was 365 nm/min and 92.4 nm/min and the removal selectivity was 3.95. Besides, the copper surface roughness reduced to 21.2 nm; the ruthenium surface roughness reduced to 43.5 nm. The removal rate for copper and ruthenium with abrasion by polishing pad (No. 40-7218, Buehler) was 355.4 nm/min and 63.95 nm/min and the removal selectivity was 5.55. The copper surface roughness was reduced to 14.3 nm and the ruthenium surface roughness was reduced to 19.03 nm. Due to the presence of ammonium ion in the ammonium persulfate solution, it could chelate and form copper complexes, and then accelerated the rate of dissolution. In the case that hydrogen peroxide solution was employed as an oxidant in slurries. 5 wt% of hydrogen peroxide in the slurries had the best performance. Its removal rate for copper and ruthenium was 207 nm/min and 85.26 nm/min, respectively, and its removal selectivity was 2.43. After chemical mechanical polishing, the copper surface roughness was reduced to16.8 nm and the ruthenium surface roughness was reduced to 32.1 nm.

參考文獻


31. 周宜欣。釕的電沉積研究及過硫酸銨組成的研磨液對釕化學機械研磨之效應。碩士論文,國立臺灣大學化學工程學研究所,臺北市,臺灣 (2013)。
9. 陳怡秀。化學機械研磨阻障層鉭與其電化學特性的研究。博士論文,國立臺灣大學化學工程學研究所,臺北市,臺灣 (2010)。
36. 吳怡葶。銅的腐蝕研究與過硫酸銨研磨液對銅/釕化學機械研磨之效應。碩士論文,國立臺灣大學化學工程學研究所,臺北市,臺灣 (2014)。
1. Steigerwald, J. M., S. P. Murarka & R. J. Gutmann. Chemical Mechanical Planarization of Microelectronic Materials. New York: John Wiley & Sons (1997).
4. Min, K. H., K. C. Chun & K. B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization.,” Journal of Vacuum Science & Technology B, 14, 3263-3269 (1996).

被引用紀錄


郭昱汝(2017)。雙氧水系統中銅/釕化學機械研磨之電化學特性研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342%2fNTU201701550

延伸閱讀