透過您的圖書館登入
IP:18.222.67.251
  • 學位論文

利用氧化鋅奈米柱製備倒置結構太陽能電池

Fabrication of Inverted Solar Cells with Zinc Oxide Nanorods

指導教授 : 吳志毅

摘要


氧化鋅奈米柱為本篇論文主要應用之材料,配合聚三己烷塞吩(P3HT)及D-A 共聚物和带噻吩共軛支鏈的苯並二噻吩與並二噻吩的共聚物(PBDTTT-C-T)為施體,苯基碳61丁酸甲酯(PC61BM)及苯基碳71丁酸甲酯(PC71BM)為受體,製作高轉換效率倒置結構太陽能電池。 首先,先探討如何有效控制氧化鋅奈主柱之成長,包括奈米柱之直徑及整體佔空比,接著優化奈米柱表面形貌至理想狀態,並以掃描式電子顯微鏡作為測量工具,透過水熱預熱法,穩定水熱法製成,成功成長所需的氧化鋅奈米柱基板。 論文的第二部分是把氧化鋅奈米柱應用至聚三己烷塞吩系統之太陽能電池,隨著氧化鋅奈米柱長度的增加,漏電流也增加,電池效率先增後減,最後在成長150分鐘之奈米柱找到最佳條件,相較於沒有奈米柱的元件,電池效率效率從3.55提升至4.42%。 論文的第三部分為把氧化鋅奈米柱應用至PBDTTT-C-T之系統,透過將氧化鋅奈米柱180oC 退火一小時,改善氧化鋅表面化學性質,使電池效率再次提升,從原先的5.20%上升至7.04%。

並列摘要


Zinc oxide (ZnO) nanorods are the main material studied in this thesis. The materials for active layers are poly (3-hexylthiophene) (P3HT) and poly{[4,8-bis-(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl]- alt -[2-(2’-ethyl-hexanoyl)-thieno[3,4-b]thiophen-4,6-diyl]} (PBDTTT-C-T) as donors, and phenyl-C61-butyric acid methypl ester (PC61BM) and phenyl-C71-butyric acid methyl ester (PC71BM) as acceptors. By applying ZnO nanorods to these two systems, we successfully fabricate inverted solar cells with high power conversion efficiency. In the first part of this dissertation, the ZnO nanorods grown by hydrothermal method is discussed. By pre-heating the solution, the ZnO nanorods are well controlled to reach an appropriate configuration. Secondly, the ZnO nanorods are applied to P3HT-based solar cells. In comparison with the device without nanorods, the PCE is raised from 3.55 to 4.42 %. With prolonging the growth duration, the PCE increases. The optimized duration is 150 minutes. Thirdly, the ZnO nanorods are applied to PBDTTT-C-T-based solar cells. The surface of ZnO is modified by annealing at 180oC for 1 hour, and the PCE is raised from 5.20 to 7.04 %.

並列關鍵字

ZnO nanorod P3HT PBDTTT-C-T hydrothermal method

參考文獻


3. B. S. Li, Y. C. Liu, Z. S. Chu, D. Z. Shen, Y. M. Lu, J. Y. Zhang, and X. W. Fan, J. Appl. Phys., 2002, 91, 501.
7. K. H. Tam, C. K. Cheung, T. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Ding, and W. K. Ge, J. Phys. Chem, B, 2006, 110, 20865.
1.4 References
1. World Energy Council (2013) World Energy Issues Monitor 2013. London: World Energy Council.
10. Z. L. Wang, J. Phys.: Condens. Matter, 2004, 16, R829.

延伸閱讀