透過您的圖書館登入
IP:18.191.5.239
  • 學位論文

以靜電紡絲製備全氟矽烷改質之抗污表面及其潤濕性質研究

Investigation and preparation of PFOTS-modified anti-smudge surface by electrospinning

指導教授 : 諶玉真

摘要


實驗中利用靜電紡絲的方式製備出聚乙烯醇(Polyvinyl alcohol, PVA)纖維結構的表面並以不同濃度的全氟矽烷(Perfluorotrichlorosilane, PFOTS)進行氟化(Fluorination)改質即完成雙疏表面的製備。以影像式接觸角測量儀分析樣品表面之潤濕性質,當PFOTS濃度提高到11.7 mM,薄膜表面對油類的接觸角遲滯降低為13°且接觸角達127°;對水的接觸角遲滯降低為1°,接觸角達146°,顯示其具備優異的抗污能力;利用掃描式電子顯微鏡(Scanning Electron Microscope, SEM)觀察樣品的表面形態,當濃度達11.7 mM時會出現花椰菜形狀(Cauliflower-like)的二次結構並填滿纖維間之的空隙,所形成緻密且更小尺度的表面結構將可防止液體的滲入,達到超低接觸角遲滯的特性;表面結構的尺度對接觸角遲滯之影響已藉由實驗與模擬的配合建立模型。此外,於裸玻璃上直接進行氟化改質雖然會使接觸角降低,但對水/油的接觸角遲滯仍可維持在20°以下,反之犧牲部分的接觸角換來的是大幅提升的透明度與耐用性。

並列摘要


In order to obtain the omniphobic surface, electrospinning has been use to fabricate polyvinyl alcohol (Polyvinyl alcohol, PVA) fibrous structure and by using different concentration of perfluorinated silane (1H,1H,2H,2H-Perfluorooctyltrichlorosilane, PFOTS) to lower the surface energy. In contact angle analysis, as PFOTS concentration increased to 11.7 mM, the contact angle hysteresis of oil decrease to 13 ° and contact angle increase to 127 °. For water, the contact angle hysteresis decrease to 1 °and the contact angle increase to 146 °. By using SEM to observe the surface morphology of the sample. We found the Cauliflower-like secondary structure fills the gaps between the fibers when the concentration increase to 11.7 mM. The structures will prevent infiltration of liquid to achieve ultra-low contact angle hysteresis. The relation between contact angle and contact angle hysteresis has been modeled by experiment and simulation. In addition, the easy-cleaning surface without surface texture has been obtained by fluorination of glass. In contact angle analysis, the water / oil contact angle hysteresis can be maintained at below 20 °. It will be close to the needs of commercial products with its transparency and durability.

參考文獻


1. N.K.ADAM, ”Use of the Term 'Young's Equation' for Contact Angles”, Nature 180, 809 - 810 (19 October 1957).
2. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28 (1936), p. 988–994.
3. A. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40 (1944), p.546–551.
4. Adam Winkleman, Immobilizing a Drop of Water: Fabricating Highly Hydrophobic Surfaces that Pin Water Droplets, Nano Lett., 8 (4), 1241–12452008.
5. De Gennes, A model for contact angle hysteresis, J. Chem. Phys. 81, 552 (1984).

延伸閱讀