透過您的圖書館登入
IP:18.116.24.105
  • 學位論文

無機奈米線與有機材料混成太陽能電池之研究

Study of Inorganic Nanowire and Organic Hybrid Solar Cells

指導教授 : 林清富

摘要


有機共軛高分子太陽能電池具有低成本、低溫製程、可撓、容易大面積製造等等優點,近年來引起廣大的注意。爲了增加有機共軛高分子太陽能電池之光電轉換效率,一般都採用本體異質結構,此結構由施體如poly(3-hexylthiophene) (P3HT)和受體如[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)混合組成一層。本體異質結構元件是施體和受體材料互相交錯形成,提供大面積的界面讓照光所產生的激子能有效分離成電子電洞。然而施體和受體材料互相交錯則不容易形成。除此之外有機材料不是很適合載子傳輸,因此有機共軛高分子太陽能電池之光電轉換效率受限於低激子的分離機率和沒有效率的跳躍式載子傳輸。 因此我們結合單晶矽奈米線與有機材料去克服有機共軛高分子太陽能電池的缺點,利用排列整齊單晶之矽奈米線結合P3HT:PCBM本體異質結構去製作排列整齊單晶矽奈米線混成太陽能電池,這排列整齊的矽奈米線是被製造從矽晶圓,並且轉移到P3HT:PCBM所覆蓋的玻璃基板,此矽奈米線提供電子未被打擾的傳導路徑、加強光的吸收和增加激子分離的界面面積。我們的結果展示矽奈米線是有潛力地提升混成太陽能電池效率,藉由增加短路電流從7.17 mA/cm2到11.61 mA/cm2。

並列摘要


Conjugated polymer-based organic solar cells have attracted considerable attention in recent years because they have many advantages, such as low-cost, processing with low temperature, flexible, large area production and so on. To increase the power conversion efficiency of organic solar cells, the most common strategy is so-called bulk heterojunction, in which donors such as poly(3-hexylthiophene) (P3HT) and acceptors like [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are blended to form one mixed layer. The bulk heterojunction devices were characterized by an interpenetrating network of donor and acceptor materials, providing a large interface area where photo-induced excitons could efficiently dissociate into separated electrons and holes. However, the interpenetrating network cannot be easily formed in the blended mixture. In addition, the organic materials are not good in carrier transport. Thus the power conversion efficiency is still limited by the low dissociation probability of excitons and the inefficient hopping carrier transport. Therefore, we combined single-crystalline Si nanowires with P3HT:PCBM to overcome the drawbacks of the conjugated polymer-based organic solar cells. The well-aligned SiNWs are fabricated from Si wafer and transferred onto the glass substrate with the P3HT:PCBM. Such SiNWs provide an uninterrupted conduction path for electron transport, enhance the optical absorption to serve as an interesting candidate of the absorber, and increase the surface area for exciton dissociation. Our investigations show that SiNWs are promising for hybrid organic photovoltaic cells with improved performance by increasing the short-circuit current density from 7.17 to 11.61 mA/cm2.

參考文獻


[93] 黃昭睿,矽奈米結構與矽發光效率之關係研究,國立台灣大學光電工程學研
[36] 鄭弘彬, 有機無機混合太陽電池製程之研究, 國立清華大學電子工程研究
[49] 黃則凱, 有機無機混掺薄膜太陽能電池之光電特性研究, 國立臺灣大學材
[22] 陳壽安,導電高分子:新時代光電材料,物理雙月刊23卷2期,312-321 (2001)。
[75] Y. H. Chang, T. H. Hsueh, F. I Lai, C. W. Chang, C. C. Yu, H. W. Huang, C. F.

被引用紀錄


林宇宏(2010)。有機高分子與無機混成太陽能電池在倒置結構下研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.02221
林信伯(2010)。矽奈米線的製備與在太陽能電池的應用〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.02033
蔡國華(2009)。高效率可撓高分子太陽能電池製備於塑膠基板之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.03304

延伸閱讀