透過您的圖書館登入
IP:44.210.103.233
  • 學位論文

高感度金屬陽離子暨生醫感測器之設計及其應用

Sensing Bio-Hazard Metal Cation and Bio-Materials; Design, Synthesis and Spectroscopy

指導教授 : 周必泰

摘要


第一章裡我把一般常見的感測器機制做了簡單的描述與介紹。 在第二章描述的是我們以過渡金屬銥為中心的錯化物,其不同於一般所看到螢光感測器,我們藉由重原子(heavy atom)效應,發展出磷光感測器,且在金屬週圍接上1-aza-15-crown-5-ether冠醚,經由分子的設計我們使電子躍遷只座落在有接上1-aza-15-crown-5-ether 冠醚的取代基上;當環境中若有金屬離子Ca2+等存在時,會使得電子躍遷發生改變因而藉由肉眼就可辨識出放光顏色有很大的變化。 在第三章裡,我們更進一步的在銥錯合物上設計功能與冠醚相當的電子受體,而在鍵結上Pb2+後整體放光行為大受影響,因而也有似第二章錯合物的效果,而產生偵測Pb2+的感測器。 繼發展出磷光感測器後,我們想真正往水溶性感測器發展,所以在第四章裡就接著設計了8,8'-(1,4,10,13-tetraoxa-7,16- Diazacyclooctadecane-7,16-diyl)bis-(methylene)diquinolin-7-ol (TDBQ)分子,把具有水溶性的7-hydroxyquinoline分子與diaza-crown ethers連接後,我們可因此去辨識水溶液中的Hg2+。而且由X-ray結構的分析,我們也發現錯合物在辨識Hg2+的過程中會經由還原Hg2+變Hg+而形成Hg22+/TDBQ 的錯合物。 在發展出水溶性感測器後,第五章裡我們更描述了 3,4,5,6-tetrahydrobis[6-carboxypyrido[3,2-g]indolo][2,3-a;3',2'-j]acridine (TCIA)分子,藉由抑制激發態質子轉移的機制而可去辨識水溶液中的尿素分子,而此感測器的特點除了是水相感測器外,至目前為此文獻及商用儀器尚無直接及non-degradable可偵測尿素的方式;而在我們所發展出的感測器裡,由於是經過藉由抑制激發態質子轉移的機制,水溶液中一旦有尿素存在時,TCIA分子鍵結上尿素就可在UV燈照射下很容易由肉眼就分辨出顏色的不同。且其可針測的尿素的線性範圍在0.1-180 mM,而腎功能異常時其值是介於30-80 mM,所以我們此型偵測器對於尿素的偵測應有大大的幫助。 而除了上述的感測器外,我們藉由分析感測器的方法,去分析金奈米粒子上只接上單一15-crown-5冠醚的取代基,當水溶液中存在K+,金奈米粒子會彼此接近而形成金-金三明治結構,且鍵結的強度為32

並列摘要


Chapter 1. General Introduction of Molecular Recognition. Chapter 2~3. Design and Synthesis of Ir(III)-Azacrown (1) and Iridium (1) Complex: Application as a Highly Sensitive Metal Cation Phosphorescence Sensor. A new metal cation probe 1 bearing a central Ir(III) element and 1-aza-15-crown-5-ether substituted pyridyl pyrazolate as the chelate was synthesized. Remarkable differentiation in spectral properties upon metal cation (e.g. Ca2+) complexation makes complex 1 a highly sensitive phosphorescence probe. Subsequently, we demonstrate the concept of Pb2+ cation sensing using the emissive another Ir(III) complex (1) based on the associated decrease of room temperature phosphorescence upon forming the 1:1 adduct 1-Pb2+. Chapter 4. Diaza-18-crown-6 Appended Dual 7-Hydroxyquinolines; Mercury Ion Recognition in Aqueous Solution. 8,8'-(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)bis-(methylene)diquinolin-7-ol (TDBQ) was synthesized and proved to recognize Hg2+ via reducing Hg2+ to Hg+, forming a unique Hg22+/TDBQ complex. Chapter 5. Protic Solvent Catalyzed Excited-state Proton Transfer in Multiple Hydrogen Bonding Systems; Its Application in Urea Recognition toward Aqueous Media. Based on synthesis of 3,4,5,6-tetrahydrobis[6-carboxypyrido[3,2-g]indolo] [2,3-a;3',2'-j]acridine (TCIA) we convey a generic approach to attain urea recognition via forming a 1:1 TCIA/urea hextuple hydrogen bonded complex in aqueous solution. Highly sensitive signal transduction is achieved via the ratiometric fluorescence for excited-state proton transfer (TCIA) versus non proton transfer (TCIA/urea complex). Chapter 6. 15-Crown-5 Functionalized Au Nanoparticles Synthesized via the Single Molecule Exchange Method; Its Application in 15-Crown-5/K+/15-Crown-5 “Sandwiches” as Linking Mechanisms. The single 15-crown-5 functionalized Au nanoparticles (NPs) were synthesized with the assistance of silica particles. The as prepared Au NPs, providing access to the fundamental analysis, were readily applied in K+ recognition and proved to be free from aggregation.

並列關鍵字

phosphorescence fluorescence cation sensor titration urea gold nanoparticles sandwich

參考文獻


13. (a) P.-T. Chou and Y. Chi, Chem. Eur. J. 2007, 13, 380. (b) P.-T. Chou and Y. Chi, Eur. J. Inorg. Chem. 2006, 3319.
5 K. C. Song, J. S. Kim, S. M. Park, K. C. Chung, S. Ahn and S. K. Chang, Org. Lett. 2006, 8, 3413.
28. Q.-Z. Yang, Q.-X. Tong, L.-Z. Wu, Z. X. Wu, L. P. Zhang and C. H. Tung, Eur. J. Inorg. Chem. 2004, 1948.
8. P.-T. Chou, W.-S. Yu, Y.-M. Cheng, S.-C. Pu, Y.-C. Yu, Y.-C. Lin, C.-H. Huang and C.-T. Chen, J. Phys. Chem. A 2004, 108, 6487.
15 P.-T. Chou, C.-Y. Wei, C.-R. C. Wang, F.-T. Hung and C.-P. Chang, J. Phys. Chem. A 1999, 103, 1939.

延伸閱讀