透過您的圖書館登入
IP:18.119.111.9
  • 學位論文

以釕金屬超分子與聚苯胺摻混聚苯乙烯磺酸組成可見光全波段吸收之電致色變元件

An Electrochromic Device Having Absorption in the Entire Visible Range with Ruthenium-based Metallo-supramolecular Polymers and Polyaniline-Poly(4-styrenesulfonate) Composite Films

指導教授 : 何國川
本文將於2024/08/20開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


在電致色變領域中提及對於全可見光波段皆具有吸收能力(或全波段吸收)之元件的文獻相當有限。電致色變材料具有互補顏色有其潛力組成全波段吸收的電致色變元件。相較於其他文獻需繁複的合成方法及製程,本研究提供一種簡單的方式以建立一個可從全黑轉變至透明之電致色變元件。近年來,金屬超分子系統在許多電化學系統具有良好的表現,包含其在電致色變之應用。一些過渡金屬像是鐵和釕曾被提及做為此種金屬超分子材料之金屬離子的來源。本篇論文主要以無機金屬離子與有機配位基分子所合成之金屬超分子材料搭配有機高分子聚苯胺-聚苯乙烯磺酸混合物,進行研究與討論其於電致色變上之性質。本研究是以化學合成之含釕金屬超分子高分子(Ru(II)-MEPE)為主要的電致色變材料。在此研究中,含釕之超分子高分子的光學、電化學性質皆會有詳盡的研究,其呈現紅色且因為其電荷傳導是透過金屬到配位基之電荷轉移方式,因此具有良好且可逆的氧化還原反應和高穿透度變化(在510奈米波長下為ΔT=52%);透過EQCM分析薄膜電量及質量變化,我們可以了解陰離子及溶劑在進行氧化還原時的莫耳通量;另一方面,聚苯胺聚合過程摻入聚苯乙烯磺酸可以改善其在水中的分散性,著色態呈綠色,可與前面提及之Ru(II)-MEPE組成互補式的電致色變元件。這兩種薄膜材料都可以簡單的噴塗塗佈法在ITO基材上製作成膜。本研究所組成的互補式電致色變元件其氧化還原反應之操作電位窗在-1.5 V及1.5 V之間 (Ru-MEPE vs. PANI:PSS)。電位在-1.5 V時,元件呈現黑色,當電位上升至1.5 V時,元件呈透明。兩極之電量搭配影響電致色變元件之穿透度變化,因此,在嘗試過多種組合後,最好的比例是元件之電量為0.75時具有最好的穿透度變化及長期穩定性,其最明顯的穿透度變化發生在波長510奈米處,為40.1%,相較於其他兩個波長550奈米及700奈米之穿透度變化分別為28.6%及32.2%。著去色時間定義為95%變色時,此元件之著色時間為4.0 s和去色時間1.3 s。至於電化學分析之量測,此元件可在操作200圈後於某定波長仍保持大部分的穿透度變化。

並列摘要


Only a few limited researches devoting to electrochromic devices (ECDs) having absorption in the entire visible range (or all-band absorption). Electrochromic materials with complementary colour have potential to be fabricated as ECDs having all-band absorption. Comparing with other complicated syntheses of black-to-transparent ECDs, this work provides a simple way to build up a black-to-transparent ECD. Metallo-supramolecular polymers (MEPEs) are metallic-organic complexes. In recent year, MEPEs have shown good performance in many electrochemical systems including eletrochrmism. Several transition metal ions, such as iron (Fe) and ruthenium (Ru), have been proposed as the source of material ions for MEPEs. In this work, optical, electrochemical properties of Ru-based MEPE are presented. Ru-based MEPE, having red colour, offers great redox reversibility and high transmittance change (ΔT=52% at 510 nm) because of the metal-to-ligand charge transfer (MLCT). From EQCM analysis, the molar flux of the anion and solvent could be calculated through the charge and mass change of the thin film. On the other hand, polyaniline doped with polystyrene sulfonate (PANI:PSS) is water-dispersible and suitable to arrange in pairs with Ru-MEPE. These two thin-film materials are easily prepared and coated on ITO substrate by spray coating. The redox reaction for the complementary ECD consisting of Ru-MEPE/PANI:PSS can be driven between -1.5 V and 1.5 V. The ECD becomes black at -1.5 V (Ru-MEPE vs. PANI:PSS) while it is colourless at 1.5 V. The influence of the charge capacity ratio of the two electrodes on the transmittance change of the ECDs has been tried, and the best condition is found at a charge capacity of 0.75. Its largest transmittance change is about 40.1% at 510 nm, as compared to 28.6% and 32.3%, at 550 nm and 700 nm, respectively. The switching times (defined as the time it takes for reaching 95% saturated transmittance change at 510 nm) are 4.0 s for darkening and 1.3 s for bleaching. From the electrochemical analysis, we prepared stable ECD with only a small transmittance decay after 200 cycles at the specific wavelength.

參考文獻


[66] 陳暐翰, 含亞銅金屬超分子高分子電解質之光電性質及其電致色變應用之研究. 國立台灣大學化學工程學研究所碩士論文, 台北, 台灣, (2012).
[86] 陳威凱, PANI或PANI/SiO2與PMeT或PProDOT-Et2搭配之互補式電致色變元件:最適化與穩定性. 國立台灣大學化學工程學研究所碩士論文, 台北, 台灣, (2009).
[2] D. Corr, Coloured electrochromic “paper-quality” displays based on modified mesoporous electrodes. Solid State Ionics, 165:(1-4)(2003) 315-321.
[3] M. Gratzel, Ultrafast colour displays. Nature, 409 (2001) 575-576.
[4] U. Bach, D. Corr, D. Lupo, F. Pichot, and M. Ryan, Nanomaterials-based electrochromics for paper-quality displays. Advanced Materials, 14 (2002) 845-848.

延伸閱讀