透過您的圖書館登入
IP:18.223.172.252
  • 學位論文

軟性電子關鍵元件與技術之研究

Development of device and processing technologies for flexible electronics

指導教授 : 吳忠幟
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近幾年來,軟性電子吸引各界的關注,已成為科技發展的趨勢,其具備可撓折、輕量化、薄型、能縮小體積便於攜帶的特點,使電子產品延伸出了許多新穎的應用,是目前最重要的科技發展重點之一,亦是下一世代最令人矚目的新產品。本論文採用有機以及無機材料,分別研究其在軟性電子元件之應用。其中,將著重於高分子二極體整流器以及非晶態氧化物薄膜電晶體在軟性電子之應用。 本研究成功地在聚碳酸酯塑膠基板上製作軟性高頻二極體整流器。探討加入一層導電高分子在二極體的陽極以及高分子半導體之間,對二極體整流特性的影響,以及不同的特性之高分子半導體本身對二極體整流特性的差異。本研究並整合高分子蕭基二極體整流器、印製天線及印製電容,成功地製作軟性無線電能傳輸薄片,該薄片可將13.56兆赫的電磁波轉換成薄片上元件需要的直流電能。 在各式各樣的氧化物半導體中,氧化銦鎵鋅在軟性顯示器背板上之應用具有相當的潛力。本研究採用上閘極交錯型的非晶態氧化銦鎵鋅電晶體,研究雙層閘極絕緣層以及不同的通道層沉積條件對電晶體電性的影響。更進一步討論非晶態氧化銦鎵鋅半導體層以及絕緣層間的界面特性以及電晶體特性的儲存穩定度。最後,利用本研究的非晶態氧化銦鎵鋅電晶體整合下發光的有機發光二極體製程顯示面板來驗證此電晶體的應用性。 最後,本研究利用奈米複合聚亞醯胺做為軟性基板,以非晶態氧化銦鎵鋅做為主動層,使用全微影全蝕刻製程,製作出軟性氧化物薄膜電晶體。本研究採用的奈米複合聚亞醯胺能夠承受製程中的熱收縮的不匹配,以及在製程中使用的化學劑,所使用的分離技術可減小聚亞醯胺與玻璃基板分離時所造成的電性劣化。此外,本論文研究非晶態氧化銦鎵鋅電晶體在彎曲中的電性影響,並且整理出在非晶態氧化銦鎵鋅電晶體上的拉伸應變對其電特性的關係。這些研究結果有助於實現軟性電子/顯示器,以及瞭解未來捲對捲的量產製造。

並列摘要


Flexible electronics have attracted a great deal of attention due to their various merits such as light weight, thin profiles, portability, and their abilities to form conformable shapes, giving various possible novel applications. Flexible electronic devices fabricated by inorganic and organic materials are investigated in this dissertation. This dissertation focuses on the applications of flexible electronics for practical devices, particularly the polymer diode rectifier and the amorphous oxide TFTs. We implemented flexible high-frequency rectifying diodes using the semiconducting polymers and the polycarbonate substrates. We studied how the intermediate layer between the anode and the semiconducting polymer and the semiconducting polymer itself affect the characteristics/performances of the rectifying diodes. Furthermore, we integrate the polymer-based vertical Schottky diode rectifier, antenna and capacitors to demonstrate a flexible wireless power-transmission sheet that can convert a 13.56 MHz electromagnetic wave into the dc power. Among various oxide semiconductors, indium gallium zinc oxide (IGZO) has a great potential as the flexible backplane technology for various active-matrix displays. Top-gate staggered a-IGZO TFTs adopting the bi-layer gate insulator and different deposition conditions for the channel layer were studied. Effects of residual Ti in the channel layer during the source/drain etching on the top-gate a-IGZO TFT were discussed. We show how the a-IGZO/gate insulator interface and storage affect the TFT performance/characteristics. Furthermore, to demonstrate the use of the a-IGZO TFTs, the top-gate a-IGZO TFTs and bottom-emitting OLEDs were integrated into an AM-OLED panel. Finally, we studied the use of colorless and transparent PI-based nano-composite substrates for fabrication of highly flexible oxide TFTs, using fully lithographic, etching, and PECVD processes that are compatible with existing TFT mass-production technologies. Furthermore, we investigated the influence of tensile bending on top-gate a-IGZO TFTs. We investigated the relationship between the electrical characteristics and the mechanical tensile strain on a-IGZO TFTs. These results may be useful for understanding and realizing flexible electronics/displays, and the roll-to-roll fabrication.

參考文獻


[34] T. N. Chen, D. S. Wu, C. C. Wu, C. C. Chiang, Y. P. Chen, and R. H. Horng, Journal of The Electrochemical Society, vol.153 , p. F244, 2006.
[41] C. H. Wu, H. H. Hsieh, C. W. Chien, C. C. Wu, Journal of Display Technology, vol. 5, p. 515, 2009.
[16] C. H. Wu, H. H. Hsieh, C. W. Chien, and C. C. Wu, Journal of Display Technology, vol. 5, p. 515, 2009.
[2] C. H. Wu, H. H. Hsieh, C. W. Chien, C. C. Wu, Journal of Display Technology, vol. 5, p. 515, 2009.
[2] C. Y. Lin, C. H. Tsai , H. T. Lin , L. C. Chang , Y. H. Yeh , Z. Pei , Y. R. Peng, and C. C. Wu, Organic Electronics, vol. 12, p. 1777, 2011.

延伸閱讀