透過您的圖書館登入
IP:18.221.154.151
  • 學位論文

矽奈米線基礎電性研究及藉外部彎曲應力調變矽奈米線振盪器之共振頻率

Electrical Property of p and n-type SiNW and Frequency Tunable SiNW Resonator by External Bending Force

指導教授 : 李嗣涔
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文研究利用化學氣相沉積法經由VLS成長機制及電場導向法成長n型及p型摻雜之矽奈米線。並發現藉由在成長方向上沉積數個獨立的金屬島,可引發局部感應電場並增強奈米線導向性。此外,亦結合感應電場導向、FIB及四點探針法量測n型及p型矽奈線的電阻率和摻雜濃度。 本論文亦利用介電泳法定位矽奈米線之位置,藉以製備矽奈米線振盪器。並利用電激發法來量測該振盪器的共振頻率。最後,經過施加外部彎曲應力來製備可調頻的矽奈米線振盪器。

關鍵字

矽奈米線 振盪器

並列摘要


Electric-field-directed growth of n-type and p-type silicon nanowires by vapor-liquid-solid (VLS) mechanism in a low pressure chemical vapor deposition (LPCVD) system is demonstrated. By depositing several isolate metal pads in the growth direction, the local-induced-electric-field is created. Therefore, the SiNWs appeared to experienced stronger electric force and have better directivity. Furthermore, Local-Induced-Electric-Field, Focus Ion Beam and Four-Point-Probe method are used to measure the resistivity and doping concentration of n-type and p-type SiNW. Dielectrophoresis is used to place SiNW and fabricate SiNW resonator. The oscillation frequency of the resonator is measured by electrical activation method. At last, a frequency tunable SiNW resonator by applying external bending force is presented.

並列關鍵字

silicon nanowire resonator

參考文獻


[6] D. Appell, Nature (London) 419, 553 (2002)
[9] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett. 75, 1842 (1999)
[10] J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, Science 287, 1471(2000)
[13] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett. 3, 149 (2003)
[16] D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S.Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, S. Q. Feng, Phys. Rev. B 59, R2498 (1999)

延伸閱讀