透過您的圖書館登入
IP:18.222.121.170
  • 學位論文

近、遠端機器輔助療法結合高強度功能性任務訓練於慢性中風患者真實環境上肢功能之療效:個案系列研究

Effects of Combining Proximal and Distal Robot-Assisted Therapy With Intensive Functional Task Practice on Real-World Upper-Limb Functions in Patients With Chronic Stroke: A Case Series

指導教授 : 林克忠

摘要


前言:機器輔助療法是一項具備高重複性、高精確性、任務導向及勞力節省等特色之現代療法。然而,先前研究指出:機器輔助療法相較於密集功能性訓練而言,在動作能力恢復有較佳之成效,但在動作功能復原則較為遜色。此外,目前鮮有聚焦於近、遠端機器輔助療法之療效對比研究。因此,透過近、遠端機器輔助療法結合高強度功能性任務訓練之研究,可提供臨床治療人員針對機器輔助療法應用之介入方案與策略。 目的:本個案系列研究主要是比較近、遠端機器輔助療法及常規職能治療結合高強度功能性任務訓練在真實環境上肢功能之療效。此外,也探究近、遠端機器輔助療法在動作能力恢復與習得動作控制策略之成效。 方法:本個案系列研究為叢集隨機分派之研究設計。受試者將被分派至近端機器輔助療法組、遠端機器輔助療法組或常規職能治療組,並接受每日90分鐘、每週五次、為期四週共20次之介入療程。成效評量工具包含:傅格梅爾評估量表(Fugl-Meyer Assessment, FMA-UE)、修訂版艾許沃斯量表(Modified Ashworth Scale, MAS)、醫學研究會議之肌力量表(Medical Research Council Scale, MRC)、渥夫動作功能測驗(Wolf Motor Function Test, WMFT)、動作活動日誌 (Motor Activity Log, MAL)、ABILHAND 問卷(ABILHAND Questionnaire)、功能獨立量表(Functional Independence Measure, FIM)、中風衝擊量表(Stroke Impact Scale, SIS)、運動學分析及腕動計。此外,針對疼痛之不良反應,採用視覺類比量表(Visual Analogue Scale, VAS)來進行監測。 結果:本研究共6位個案分派至近端機器輔助療法組;4位個案分派至遠端機器輔助療法組;3位個案分派至常規職能治療組。臨床評估部分,從FMA-UE得分相對改變量而言,近、遠端機器輔助療法組各有3位個案、常規職能治療組有1位個案達最小臨床重要差異量。從FMA-UE近端次量表而言,近端機器輔助療法組有4位個案、遠端機器輔助療法組有3位個案、常規職能治療組有1位個案達最小臨床重要差異量。從FMA-UE遠端次量表而言,近端機器輔助療法組有2位個案、遠端機器輔助療法組有3位個案、常規職能治療組有1位個案達最小臨床重要差異量。在WMFT動作品質次量表而言,近、遠端機器輔助療法組各有2位個案、常規職能治療組有1位個案達最小臨床重要差異量。在WMFT時間次量表而言,近端機器輔助療法組有3位個案、遠端機器輔助療法組有4位個案達最小臨床重要差異量。在SIS生理功能次量表而言,近端機器輔助療法組有3位個案、遠端機器輔助療法組有2位個案、常規職能治療組有2位個案達最小臨床重要差異量。運動學分析部分,近端機器輔助療法組在食指反應時間、食指動作時間、食指標準化位移、軀幹動作時間、軀幹標準化位移等參數有較佳之表現;遠端機器輔助療法組則在食指反應時間、食指最大速度、食指達到最大速度的時間百分比、軀幹最大速度、關節協調性等參數有較佳之表現。腕動計分析部分,近端與遠端機器輔助療法組在手部使用計次、能量消耗與日常至中等強度活動使用量等參數有較佳之表現。此外,在治療期間並未有任何與研究相關之不良反應發生。 結論:本研究支持合併機器輔助療法及密集功能性訓練於慢性中風病人的動作能力、日常生活功能及生活品質之正向療效。研究結果顯示近端機器輔助療法對於近端與粗大動作有較佳之成效;遠端機器輔助療法對於遠端與精細動作有較佳之成效。另外,轉移效益確實存在於治療中,且遠端機器輔助療法相較於近端機器輔助療法有較高之效益。但是,本研究各組樣本數過小,結果須謹慎解釋,建議未來研究擴大樣本數並更進一步探討療效。

並列摘要


Introduction: Robot-assisted therapy (RT) has become an innovative rehabilitation approach. RT has been known for its high intensity, high accuracy, labor saving, and task-directedness. However, previous studies revealed that RT is more effective on motor abilities, but less on motor functions than intensive functional task practice. Moreover, few studies have studied the effects of proximal- vs. distal-emphasized RT. Comparison of the 2 devices of InMotion interactive therapy system (ie, InMotion Arm 2.0 and InMotion Wrist 3.0) may improve our knowledge about their relative effects and inform clinical practice of motor rehabilitation based on RT. Objectives: This case series study compared the effects of proximal-emphasized RT (P-IMT), distal-emphasized RT (D-IMT), and control treatment (CT) combined with intensive functional task practice on real-world arm activities and functional outcomes. In addition, this study also examined the effects of these two modes of InMotion on motor impairment, including muscle tone and muscle power, and motor control strategies. Methods: This case series study was a cluster randomized controlled trial with pretest and posttest assessments. Participants received one of P-IMT, D-IMT, or CT intervention for 20 sessions (90 minutes per day, 5 days per week for 4 weeks). Outcome measures included the upper-extremity subscale of Fugl-Meyer Assessment (FMA-UE), Modified Ashworth Scale (MAS), Medical Research Council Scale (MRC), Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), ABILHAND Questionnaire, Functional Independence Measure (FIM), Stroke Impact Scale (SIS), kinematic variables, and wrist accelerometers. Moreover, self-reported pain was monitored by using the Visual Analogue Scale (VAS) immediately after intervention. Results: There were 6 participants recruited in P-IMT group; 4 participants recruited in D-IMT group; 3 participants recruited in CT group. In clinical outcomes, from the perspective of relative change in FMA-UE, 3 participants in P-IMT group reached minimal clinically important difference (MCID); 3 participants in D-IMT group reached MCID; 1 participant in CT group reached MCID. In FMA-UE proximal subscale, 4 participants in P-IMT group reached MCID; 3 participants in D-IMT group reached MCID; 1 participant in CT group reached MCID. In FMA-UE distal subscale, 2 participants in P-IMT group reached MCID; 3 participants in D-IMT group reached MCID; 1 participant in CT group reached MCID. In WMFT-QOM, 2 participants in P-IMT group reached MCID; 2 participants in D-IMT group reached MCID; 1 participant in CT group reached MCID. In WMFT-TIME, 3 participants in P-IMT group reached MCID; 4 participants in D-IMT group reached MCID. In SIS physical functions subscale, 3 participants in P-IMT group reached MCID; 2 participants in D-IMT group reached MCID; 2 participants in CT group reached MCID. In kinematic variables, P-IMT group showed favorable outcomes in reaction time, movement time (MT), motor unit (MU), and normalized total displacement (NTD) of endpoint control; MT and NTD of trunk compensation. D-IMT group showed favorable outcomes in reaction time, peak velocity (PV), and percentage of index peak velocity (PPV) of endpoint control; PV of trunk compensation, and joint coordination. In accelerometric measures, both P-IMT and D-IMT groups showed favorable outcomes in vector magnitude counts, energy expenditure and using amount of activity in lifestyle to moderate level. In adverse effects monitoring, no serious adverse effect occurred during the period of intervention. Conclusion: This study supports the positive effects of P-IMT or D-IMT combined with intensive functional task practice on motor abilities, motor functions, and QOL in patients with chronic stroke. Moreover, P-IMT revealed superiority on proximal and gross movement of upper extremity, while D-IMT revealed superiority on distal and dexterous movement of upper extremity. In addition, generalizing effects emerged during intervention (D-IMT might have more generalizing effects than P-IMT). Due to the small sample size, the conclusion should be interpreted cautiously. Further studies are needed to expand the sample size and further validate the findings of this study.

參考文獻


Aisen, M. L., Krebs, H. I., Hogan, N., McDowell, F., & Volpe, B. T. (1997). The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Archives of Neurology, 54(4), 443-446
Benaim, C., Froger, J., Cazottes, C., Gueben, D., Porte, M., Desnuelle, C., & Pelissier, J. Y. (2007). Use of the Faces Pain Scale by left and right hemispheric stroke patients. Pain, 128(1), 52-58.
Bohannon, R. W., & Smith, M. B. (1987). Interrater reliability of a modified Ashworth scale of muscle spasticity. Physical therapy, 67(2), 206-207.
Carod-Artal, F. J., Coral, L. F., Trizotto, D. S., & Moreira, C. M. (2008). The stroke impact scale 3.0 - Evaluation of acceptability, reliability, and validity of the Brazilian version. Stroke, 39(9), 2477-2484. doi: 10.1161/STROKEAHA.107.513671
Chen H. M., Chen C. C., Hsueh I. P., Huang S. L., & Hsieh C. L. (2009). Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair, 23(5), 435-40. doi: 10.1177/1545968308331146

延伸閱讀