透過您的圖書館登入
IP:18.225.255.134
  • 學位論文

短腔光學參量振盪器與波長可調紫外光和頻產生之研究

Study of Short Cavity Optical Parametric Oscillator and Wavelength Tunable Sum Frequency Ultraviolet Generation

指導教授 : 彭隆瀚

摘要


紫外光波段之非線性光學的頻率轉換為本論文的研究主題,依照準相位匹配理論,我們設計出光參振盪及和頻週期,並利用高電壓極化反轉技術,製作週期性極化反轉鉭酸鋰(Periodically Poled Lithium Tantalite , PPLT)非線性轉換光參晶體。我們在0.5mm厚的鉭酸鋰晶體(Lithium tantalite, LiTaO3, LT)基板,製作長度L=20mm寬頻紅外光結構;並利用0.35mm厚的鉭酸鋰基板,製作總長度L=25mm級聯式光參-和頻紫外波長可調和頻結構。 在光學實驗量測中,寬頻紅外光參產生採用單週期準相位匹配結構,以532nm作為泵浦光源,在簡併點附近進行光參轉換。我們利用光參振盪器波長輸出隨晶體溫度調整之特性,產生1000~1200nm光源。當輸入693mW綠光,可轉換出231mW紅外光,此時產生之紅外頻寬約38nm,斜線效率達59.35%。 對於厚度0.35mm之級聯光參-和頻晶體,我們藉由調整晶體溫度而改變第三階準相位匹配之紫外光波長輸出。當綠光泵浦功率為688mw下,可產生功率為1.2mW的348nm波長紫外光,斜線效率0.37%。

關鍵字

和頻 紫外光 紅外光

並列摘要


This work is the study of quasi-phase matching (QPM) ultraviolet frequency up-conver¬sion using periodically poled lithium tantalite (PPLT). It is composed of two parts:(1) design, implementation and characterization of optical parametric oscillation (OPO) with a single period first-order QPM structure on 0.5mm thick 20mm long PPLT, and (2) design, implementation and characterization of first-order optical parametric oscillation (OPO) structure of 19mm length cascaded 6mm long 3rd QPM-sum frequency generation (SFG) in the ultraviolet spectral regime using 0.35mm thick PPLT. First, the PPLT OPO sample was fabricated a QPM period of 7.63μm. The device was characterized with a 532nm green pump and operated near the degenerate point. By temperature tuning, the device exhibit a broad spectral tuning range from 980nm to 1160nm. With a 532nm pump power of 693mw, we obtain infraed output power of 231mw with a slope efficiency of 59.35% and spectral width of 38nm at the crystal temperature of 130 oC. Next, we characterized a second sample with cascaded structures to generate broadband IR beam and tunable SFG of UV light. Device has the same QPM-OPO periodic 7.63μm of length 19mm and a third-order QPM-SFG periodics of 6.098μm, 6.1071μm, 6.122μm, 6.135μm and 6.149μm of total length 6mm. In SFG design,we design five different periodics in cascade which allows us to get a tunable source of UV laser by crystal temperature tuning. At a green pump power of 688mw, we obtained a maximum power of UV laser about 1.2mw at a wavelength of 348nm and crystal temperature of 138.9 oC.

參考文獻


[12] 徐維駿, “利用週期性極化反轉結構之光參數過程產生可調可見光與寬頻光源”, 國立交通大學光電工程學研究所碩士論文, 2009.
[2] Fabrice Devaux, Alexis Mosset, Eric Lantz, Serge Monneret, and Herve’ Le Gall, “Image upconversion from the visible to the UV domain:application to dynamic UV microstereolithography”, 190.7220, 220.4000, 350.5130
[3] T. H. Maiman, "Stimulated Optical Emission in Ruby," Journal of the Optical Society of America, Vol. 50, pp. 1134-1134, 1960.
[5] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Physical Review Letters, Vol. 127, pp. 1918-1939, 1962.
[6] M. M. Fejer, G. A. Mahel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched harmonic generation: tuning and tolerances", IEEE J. Quantum Electron., Vol. 28, pp. 2631-2654, 1992.

延伸閱讀