透過您的圖書館登入
IP:18.119.139.50
  • 學位論文

磁旋返波震盪器之線性行為之研究

Study of Linear behavior of the Gyrotron Back-Wave Oscillator

指導教授 : 朱國瑞

摘要


磁旋返波振盪器有高功率和頻寬大範圍的兩大特性,其特性使其成為很有潛力的微波供應源。磁旋返波振盪器的共振是憑藉內部回饋迴路,而非共振結構。在線性區間場形延伸整個作用段,而飽和的場形完全取決於回饋迴路的的能量。振盪頻率跟場形由電子跟電磁波交互作用而定。線性情況下,電子能量的吸吐次數定義軸性模式的級數。在電流升高時,電子振盪吸吐速率以及電磁波場型往上游壓縮,並逐漸達到飽和。同時使得原先較低軸性模式的吸吐次數緩緩增加,並逐漸與其他模式接近。在此情況下,各模式間的共振頻率會持續升高,而由於每個模式共振頻率隨著電流升高的幅度不同,造成在高電流時前三個模式的共振頻率非常接近。在此情況下,每個模式的吸吐次數隨之增加的結果,造成模式之間的界線變得不明顯。

並列摘要


Gyrotron Backward Wave Oscillator (Gyro-BWO) for its high power handling and wide frequency tuning capability is one of the promising high power coherence radiation sources. These oscillations build on an internal feedback process, which requires no resonant structure. The linear field extends over the entire structure length, whereas the saturated profile depends strongly on the energetic in the internal feedback loop. In the absence of a resonant structure, the oscillation frequency and axial field profile are governed entirely by the interaction dynamics. Linearly, the number of regions of positive energy deposition determines the order of the axial mode. When beam current increase, field in the waveguide is compressed, interaction shift toward the upstream end of the waveguide, then gradually become saturated. This effect makes the resonance frequency increase with beam current, add more regions of positive energy deposition and the resonance frequency of different transit angle modes are close.

並列關鍵字

Gyro-BWO Maser Gyrotron

參考文獻


[22] T. H. Chang, S. H. Chen, L. R. Barnett and K. R. Chu, Phys. Rev. Lett. 87, 064802, 2001
[23] S. H. Chen, T. H. Chang, K. F. Pao, C. T. Fan and K. R. Chu, Phys. Rev. Lett. 89, 268303,
[13] M. T. Walter, R. M. Gilgenbach, J. W. Luginsland, J. M. Hochman, J. I, Rintamaki, R. L.
[5] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barentt, S. H. Chen, T. T. Yang and
[1] P.Forman, Rev.Mod. Phys. 67, 397, 1995,

延伸閱讀