透過您的圖書館登入
IP:18.222.120.133
  • 學位論文

廢竹筷與桐油共液化裂解產製油品之研究

Conversion of Waste Bamboo Chopsticks and Tung oil to Bio-crude oil via Co-liquefaction

指導教授 : 張慶源

摘要


在面對全球變暖和化石燃料消耗的擔憂的世界上,尋求可再生能源和環境可持續能源替代我們目前的能源生產實踐至關重要。生質物(Biomass)是一種能夠生產液體燃料的可再生能源。本研究中利用熱轉換方法中的共液化方法,將生質物轉製成液態生質能源。影響液化方法的因素有很多,包含了反應溫度、反應時間、加熱速率、原物料組成和原料粒徑、反應槽填充的氣體以及催化劑的使用和使用催化劑的種類。本研究著重於反應溫度(TC)、反應時間(trcT)以及催化劑的使用三個影響因素來進行反應變因的改變,並且探討實驗所產生的生質油(BO)產物、固體產物(SP)以及氣體產物和反應變因之間的關聯。 在各產物當中以BO為本研究的目標產物。結果顯示將竹筷與桐油共液化於TC = 573-623 K和trcT = 0-30 min,其生質油產率(YBO)最高可以達到58.52 wt%,其餘均在40-50 wt%之間。加入觸媒(γ-Al2O3)後,BO的產率均下降,最高只到46 wt%,顯示加入觸媒使得液體中間產物之裂解加劇分解成氣體產物。加入觸媒可以使BO熱值從原本未加入時的39.25 MJ/kg略升到40.86 MJ/kg。 模擬蒸餾的結果顯示,桐油主要組成碳數為C16-C22之不飽和脂肪酸。不論有無加入觸媒,經過共液化過後,裂解成低碳數碳氫化合物之效果佳,在573、603及623 K時,沒有加入觸媒的情況下所產生的生質油品其C6-C14所佔比例依序為45、60及53%,與航空用油C10-C14佔61%相當接近。但其產物BO之其他性質(酸價、熱值等)均與航空用油標準有一段差距,所以仍需改善。

關鍵字

竹筷 桐油 共液化 生質油 觸媒

並列摘要


Since the decrease of fossil fuel, the development of renewable energy is concerned around the world. In this research, co-liquefaction, which is thermochical methods, was applied for transforming the waste bamboo chopsticks and tung oil into bioenergy. The affecting factors of co-liquefaction include reaction temperature(TC), reaction time(trcT), heating rate, type of materials, size of materials, initial gas in reactor and the type of catalysts. The products of co-liquefation contain bio-crude oil (BO), solid product (SP) and gas product (GP). Effects of reaction temperature, reaction time and use of catalysts on the system performance were emphasized. The most important product of co-liquefaction is BO. At TC = 573-623 K with trcT = 0-30 min, the highest of BO yield(YBO) reached is 58.52 wt%, while the others are between 40 and 50 wt%. After adding the catalyst (γ-Al2O3), YBO decreases with the highest YBO of 46 wt%. Thus, adding the catalyst results in the vigorous decomposition of liquid intermediat products into gaseous products, reducing the YBO. However, adding catalyst makes the heating value slightly rise to 40.86 MJ/kg from 39.25 MJ/kg without adding catalyst. So adding the catalyst can lead to a big change of BO yield. The main composition of tung oil is unsaturated fatty acid with carbon number between C16 to C20. Whether adding the catalyst or not, the results indicate that the pyrolysis is effective via co-liquefaction, cracking the BO into small fragments of low carbons. Without adding the catalyst, the fractions of components of C6 to C14 in the BO could reach about 45, 60 and 53% at 573, 603 and 623 K, respectively. They are close to that of C10 to C14 in aviation fuels which is around 61%. Howerver, the properties of BO including acid value, heating value and so on do not conform the standard of aviation fuels. Further upgrading of BO would be needed.

參考文獻


41.陳麒百. (2015). "以水熱法進行不同性質生質物液化轉製液體燃料之研究." 國立台灣大學環境工程學研究所碩士論文.
36.田偲穎. (2015). "以超音波輔助半連續是痲瘋油轉酯化程序產製生質柴油." 國立台灣大學環境工程學研究所碩士論文.
4.Chen, Y. H., Chang, C. C., Chang, C. Y., Yuan, M. H., Ji, D. R., Shie, J. L., Lee, C. H., Chen, Y. H., Chang, W. R., Yang, T. Y., Hsu, T. C., Huang, M., Wu, C. H., Lin, F. C. and Ko, C. H. (2017). "Production of a solid bio-fuel from waste bamboo chopsticks by torrefaction for cofiring with coal." Journal of Analytical and Applied Pyrolysis 126: 315-322.
2.Akhtar, J. and Amin, N. A. S. (2011). "A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass." Renewable and Sustainable Energy Reviews 15(3): 1615-1624.
5.Dhyani, V. and Bhaskar, T. (2017). "A comprehensive review on the pyrolysis of lignocellulosic biomass." Renewable Energy (In press, available online 18 April 2017).

延伸閱讀