透過您的圖書館登入
IP:54.227.104.229
  • 學位論文

新型芳香環有機材料之合成與其應用於染敏化太陽能電池

Synthesis of New Type Aromatic Organic Material and Applications on Dye-Sensitized Solar Cells

指導教授 : 周大新
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


利用電子予體-共軛架橋-電子受體(Donor-π-Bridge-Acceptor)架構設計並合成染敏太陽能電池染料。使用奈米級二氧化鈦所做的工作電極、I-/I3-電解質與Pt對電極,製作出太陽能電池元件。 第二章使用不同第三丁基芳香環胺作為電子予體,以Stille coupling方式建構出具有末端醛基的phenylene-thiophene-phenylene (PSP)共軛架橋分子,再以Knoevenagel condensation,使用cyanoacetic acid與末端醛基去建構出含有末端酸基的電子受體,並製作成太陽能電池元件探討,電子予體的改變對於染料效率的影響。元件效率測得最好的為化合物CB-PSP,其轉換效率最高可達到6.70 %。為了證明第三丁基可幫助減少分子堆疊,使用CDCA作為共吸附劑,發現其元件效率呈現下降的趨勢,表示有可能減少二氧化鈦上的染料吸附量,造成元件Jsc減少。由此證明CB-PSP在具有第三丁基時,可能會減少分子堆疊的情況。 第三章為使用phenothiazine做為染料主體,由於其構型上為非平面,其構型亦可減少分子本身的堆疊。因此將phenothiazine作為一個單位,在氮上建構出兩種不同鏈長的官能基,再以NBS溴化、低溫下以正丁基鋰和N,N-二甲基甲醯胺或是三異丙基硼酸,製作具有溴基、醛基及硼酸官能基的phenothiazine結構,以Suzuki coupling建構出具有醛基的單體、雙聚體和三聚體的phenothiazine,再以Knoevenagel condensation,使用cyanoacetic acid與末端醛基去建構出含有末端酸基的電子受體。在元件效率測得以雙聚體系統有較好的效率,並且以具4-(hexyloxy)-phenyl group的PT2b其轉換效率可達到7.38 %,並且在加入共吸附劑DCA後,由於幫助調整染料在二氧化鈦上的排列和減少I3-和二氧化鈦接觸,轉換效率可達7.78 %。 第四章使用1,3-indandione-5,6-dicarboxylic acid做為電子受體,由於1,3-indandione具有相當強的拉電子性,相當容易將吸收範圍往紅光區移動,故使用其衍生物期望較短共軛系統下就可以得到較廣的吸收範圍。在酸性條件下使用1,3-indandione-5,6-dicarboxylic acid與具有醛基的芳香環胺作縮和反應,並且製作成太陽能電池元件探討。與cyanoacetic acid所作之染料相比,吸收光譜有約100 nm的紅位移,表示1,3-indandione-5,6-dicarboxylic acid具有相當強的拉電子基性質。將其作成元件後,其光電轉換效率並不高,以具有n-hexyloxy group的化合物2而言,其效率只有1.10 %,當加入莫爾比333倍的DCA後,其效率可達到2.51 %。

並列摘要


In chapter 2, we have described the synthesis of a series of metal-free organic dyes containing phenylene-thiophene-phenylene (PSP) as conjugated spacer attached with various tert-butyl substituted arylamines as donor and cyanoacetic acid as acceptor for DSSCs studies. Presence of tert-butyl group in the donor unit not only suppressed intermolecular aggregation but also helped in reducing charge recombination rate. Compared to other dyes discussed in this chapter, the dye CB-PSP exhibited maximum overall conversion efficiency (6.70 %) with short-circuit photocurrent density (Jsc) of 14.63 mA•cm-2 and open-circuit photovoltage (Voc) of 0.685 V. For dye CB-PSP, the observed maximum photon-to-current conversion efficiency (IPCE) was more than 80% in the region of 420~480 nm. We have used CDCA (chenodeoxycholic acid) as co-adsorbent in order to demonstrate the effect of tert-butyl group for inhibition of dye-aggregation. By using CDCA, the overall performance was decreased as CDCA reduced the dye loading amount on TiO2. This observed result indicated that tert-butyl group effectively inhibited the dye-aggregation on TiO2 surface. In chapter 3, we have described the synthesis and studies of a series of organic oligo-dyes for DSSCs applications based on non-conjugated phenothiazine both as donor and spacer. As the geometry of phednothiazine is not planer, the dyes containing phenothiazine unit are expected to reduce the rate of charge recombination and dye-aggregation. All dyes discussed in this chapter exhibited an open-circuit photovoltage (Voc) more than 0.78 V under the AM 1.5 solar condition (100 mW∙cm-2). The overall conversion efficiencies of dyes followed the order dimer > monomer > trimer. The dye PT2b showed maximum efficiency (7.78 %) by using DCA as co-adsorbent with short-circuit photocurrent density (Jsc) of 14.3 mA•cm-2, open-circuit photovoltage (Voc) of 0.83 V and fill factor (FF) of 0.65. In chapter 4, we have demonstrated the synthesis and studies of dyes containing 1,3-indandione-5,6-dicarboxylic acid as an electron acceptor in place of commonly used conventional cyanoacetic acid. For these dyes, substituted triphenylamines have been used as donor units. The strong electron withdrawing nature of 1,3-indandione shifted the absorption maxima towards higher wavelength of these simple D-π-A systems. The dyes 1 and 2, showed about 100 nm red shift in their absorption maxima as compared to analogous 2-cyano-3-(4-(diphenylamino)phenyl)acrylic acid (TPA) which we have used as reference dye for comparison. The dye 2 exhibited maximum efficiency of 2.51 % in presence of DCA (100 mM) with short-circuit photocurrent density (Jsc) of 6.86 mA•cm-2, open-circuit photovoltage (Voc) of 0.58 V and fill factor (FF) of 0.63.

參考文獻


N. A. Anderson, X. Ai, T. Lian, S. Yanagida, Chem.
Liu, W. Li, B. Wang, X. Li, Q. Liu, Y. Naruta , W.
1. a) Z. S. Wang, Y. Cui, K. Hara, Y. Dan-oh, C.
Chem. B. 2005, 109, 23776. c) D. Kuang,; S. Uchida,
Xiang, B. Zhao, H. Huang, H. Li, P. Shen, S. Tan, J.

延伸閱讀