透過您的圖書館登入
IP:100.26.1.130
  • 學位論文

以兩性離子材料製備多孔水凝膠與其對內皮細胞在組織工程的影響

Fabrication of Zwitterionic Porous Hydrogels for Endothelial Cell and Tissue Engineering

指導教授 : 游佳欣

摘要


抗結垢表面(anti-fouling surface)為許多生醫材料之重要特性之一。兩性離子材料憑藉著結構中同時帶有部分正負電誘導出高水合的特性,此高水合特性使得以此做為基材的生醫材料表面,亦能擁有良好的抗結垢性質。因此,兩性離子材料在在組織工程上為目前一廣為研究的主題。在本研究中,我們即利用兩性離子材料SBMA(sulfobetaine methacrylate),以自由基聚合方式製作二維水凝膠表面與三維多孔性結構。 二維水凝膠表面研究除了材料機械強度測試,實驗尤其探討牛主動脈內皮細胞(BAEC)在其上生長之情形,主要包含細胞貼附測試、細胞增生測試以及相關基因表現的定量,再輔以接枝不同功能之胜肽鏈,比較出內皮細胞在不同pSBMA表面上表現的相異關係。研究結果發現:(1) 接枝RGD序列能有效增進細胞貼附性質;(2) 接枝QK序列對於內皮細胞增生能有顯著的增進效果;(3) 內皮細胞相關基因表現,則在結果無顯著差異。雖然接枝不同功能之胜肽序列對於細胞在二維材料平面上有顯著的影響,但添加如上述的序列卻會降低水凝膠的機械強度,要維持一定的機械強度需要提高交聯時SBMA的濃度。 三維多孔性結構部分,我們嘗試以鹽瀝取法(Salt-Leaching Method)與氣體發泡法(Gas-Foaming Method)製作出均勻且相互連通之孔洞結構。然而氣體發泡的技術受反應速率、酸鹼值的影響無法輕易控制孔洞大小,而作出孔徑差距很大的多孔結構;而鹽瀝取法為另一簡單、再現性高之多孔性水凝膠製作方法,此技術並且使用事先過篩之食鹽顆粒製備孔洞,水凝膠聚合後將可精準地控制其孔徑大小。實驗最後將此多孔結構應用於細胞組織工程中的生長支架,培養內皮細胞於此支架內,以掃描式電子顯微鏡(SEM)觀察細胞生長型態,並在培養一定時間後進行病理組織切片染色,未來將深入進行更多體內(in vivo)實驗研究。

並列摘要


Zwitterionic hydrogels have been investigated for a number of applications in tissue engineering. The most important characteristics include the non-fouling property and it can be highly hydrated. So, with some specific structural modification, it is an appropriate material of tissue engineering scaffold. In this study, we first introduced the generation of 2-D poly-(SBMA) hydrogels surfaces. By incorporating with RGD and QK, endothelial cells can attach to the surface well to and proliferate in a short-term culturing. However, the mechanical property, which plays a crucial role directing the cellular functions and supporting the structures, decreases when peptides graft onto hydrogels. Manipulating the mechanical property was thus necessary and the most related factor was the monomer concentration. From our results, the higher amount of SBMA caused greater stiffness in hydrogels. In the second part of our study, we fabricated 3-D porous hydrogels for cell scaffolds by some novel methods. The salt/particle leaching method is more reliable than gas-foaming method to fabricate homogeneous and open-interconnected pores within the hydrogel. Using a salt/particle leaching method, we can control the pore size before leaching. Endothelial cells within scaffolds were also investigated the morphology by SEM and histological analysis was conducted in vitro and in vivo.

參考文獻


[1] Curtis A, Riehle M. Tissue engineering: the biophysical background. Phys Med Biol. 2001;46:R47-R65.
[3] Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci. 2011;100:59-74.
[4] Page H, Flood P, Reynaud EG. Three-dimensional tissue cultures: current trends and beyond. Cell Tissue Res. 2013;352:123-31.
[5] Oka M, Ushio K, Kumar P, Ikeuchi K, Hyon SH, Nakamura T, et al. Development of artificial articular cartilage. Proc Inst Mech Eng H. 2000;214:59-68.
[6] Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Comm. 2000;21:117-32.

延伸閱讀