透過您的圖書館登入
IP:18.116.90.141
  • 學位論文

含螢光分子之多層奈米粒子的平均螢光增益

Average enhancment factor of molecules-doped multi-layered nanoparticles on fluorescence

指導教授 : 郭茂坤

摘要


根據Maxwell方程式、Mie理論與並矢格林函數,整理球型奈米粒子受平面波與電偶極波源的電磁場解析解,並進一步將散射體由實心球推廣至多層結構。除此之外,再定義激發效率、量子效率、螢光增益以及考慮螢光分子隨機分佈、任意極化方向的平均螢光增益。 螢光增益與螢光分子位置、震盪方向、入射平面波極化方向三者有密切的關係,考慮一般實驗螢光分子均勻分布、極化方向難以控制的情況,以平均螢光增益的概念來解釋各種散射體的光學特性較為恰當,可避免過於高估或低估的情形產生。另外,再加入史托克位移(Stokes shift)效應,即入射平面波波長與螢光分子放出螢光波長不同的情況,討論核殼散射體、奈米殼散射體與觀察對平均螢光增益的影響。 由數值模擬結果得知,當激發雷射波長與該奈米粒子的表面電漿共振波段重疊時,就可以得到最大的平均螢光增益效果。最後,我們發現銀奈米殼具有最大的平均螢光增益,其值高達225倍。

並列摘要


According to Maxwell equations, Mie theory and dyadic Green’s functions, analytical solutions of the incident plane wave and electric dipole source in the multi-layer structure are derived. In addition, we also define the excitation rate, quantum yield, enhancement factor and average enhancement factor. The average enhancement factor (AEF) by considering the arbitrary orientation and location of molecule with respect to the polarization of the incident wave is proposed to explain the overall performance of a large number of nanoparticles. The concept of AEF can avoid overestimating or underestimating fluorescent intensity. Furthermore, with Stokes shift effect, we observe the difference of AEF between three kinds of nanoparticles:core-shell, nanoshell and nanoshell@SiO2. To obtain the maximum AEF, the excitation spectra had better overlap the surface plasmon resonance(SPR) band. Finally, our results indicate that Ag nanoshell has the highest AEF. The AEF of optimal size of Ag nanoshell (radius of SiO2: 20 nm, thickness of Ag shell: 5nm) is 225.

參考文獻


[38] 杜偉民,“金屬奈米核殼粒子對螢光增益之研究”,國立臺灣大學應用力學研究所碩士論文, 2009.
[9] S. S. Chang and C. R. C. Wang, “The Synthesis and Absorption Spectra of Sev¬eral Metal Nanoparticle Systems,” Chem. 56, 209-222, 1998.
[37] 孫聖傑,“三維奈米粒子於電磁場解析解研究”,國立臺灣大學應用力學研究所碩士論文, 2008.
[1] C. Loo, A. Lowery, N. Halas, J. West, and R. Frezek, “Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy,” Nano Lett. 5 (4), 709-711, 2005.
[2] B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17, 5167–5179, 2006.

被引用紀錄


陳柏任(2013)。銀奈米結構之電漿子共振模態對螢光共振能量轉移的影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.01963
陳皇志(2013)。單顆和雙顆多層奈米粒子之表面電漿子模態分析與對螢光分子的螢光增益之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.01765
江崇煜(2011)。金屬奈米殼之電漿子模態分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.01736

延伸閱讀