透過您的圖書館登入
IP:18.117.76.7
  • 學位論文

無閥式微幫浦結合慣性分離微流道系統

Valveless micropump combined with inertial separation in a contraction–expansion array microchannel system

指導教授 : 林致廷

摘要


本論文以壓電致動片來驅動無閥式微幫浦,並在其後端接上慣性分離微流道,嘗試完成一個將流體從左端注入微幫浦進口端後,由微幫浦將其推動往右端進入慣性分離微流道進行分離後從出口端收集不同大小的粒子的完整系統。 首先我們先進行無閥式微幫浦的測試,藉由調整不同頻率以及電壓,來觀察微幫浦的趨動體積流率表現,最好的作用頻率在於400~500Hz之間,其最大流速可以到達約15ml/hr,且在個別的微幫浦測量中的結果相似,亦即個別的微幫浦提供的體積流率穩定,可靠性高,而在連續測量的實驗中,我們發現相同的微幫浦在連續測量時會有體積流率下降的情形。 之後進行慣性分離微流道的測量,將樣本體積流率設為1ml/hr,緩衝液體積流率設為8ml/hr,成功利用收縮擴張微流道的特性將10μm的綠色螢光粒子與6μm的紅色螢光粒子分離。 最後將微幫浦與慣性分離微流道系統結合,並藉由驗證其之間的阻力與驅動壓力的關係,得到了改善其整體裝置的想法,使之能夠達到低成本、高反應速率、可居家照護的最終目標。

關鍵字

微流道 微幫浦 慣性分離

並列摘要


We designed a system with valveless micropump and inertial separation microchannel. With this device, we want to separate the different size of particles from the sample fluid without other additional forces. We successfully made a valveless micropump and inertial separation microchannel, and they can work individually. The volume rate of the vlaveless micropump can reach about 15ml/hr with 400~500Hz of given frequency. The individual valveless micropump can provide similar volume rate, and it means that the reliability of the individual valveless micropump is high. In the continuous testing of valveless micropump, we found that the volume rate decrease. In the inertial separation microchannel experiment, we set the sample volume rate as 1ml/hr and the buffer volume rate as 8ml/hr. We successfully separate the 10μm and 6μm fluorescent beads. We combined these two parts and want to make the whole system work, and we verify the pressure produced by the micropump, and the resistance in the inertial separation microchannel. We give some feasible improvements that can raise the whole performance of this valveless micropump and inertial separation microchannel system and try to make it a point-of-care device.

並列關鍵字

microfluid micropump inertial separation

參考文獻


[3] R. Linnemann, P. Woias, C. –D. Senff, and J. Ditterich, “A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases, “ in Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings, The Eleventh Annual International Workshop on, 1998, pp. 532-537
[5] T. S. Lammerink, M. Elwenspoek, and J. H. Fluitman, “integrated micro-liquid dosing system,” in Micro Electro Mechanical Systems, 1993, MEMS’93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE., 1993, pp. 254-259
[6] Stemme, E. and Stemme, G. Valveless diffuser/nozzle-based fluid pump. Sensors and Actuators, A: Physical, 1993, 39(2), 159-167
[8] Olsson, A., Enoksson, P., Stemme, G. and Stemme, E. Micromachined flat-walled valveless diffuser pumps. Journal of Microelectromechanical Systems, 1997, 6(2), 161-166
[9] Olsson, A., Larsson, O., Holm, J., Lundbladh, L., Ohman, O. and Stemme, G. Valve-less diffuser micropumps fabricated using thermoplastic replication. Sensors and Actuators, A: Physical, 1998, 64(1), 63-68

延伸閱讀