透過您的圖書館登入
IP:3.17.79.60
  • 學位論文

高靈敏度石墨烯應變感測器之研究

Graphene Strain Sensor with High Sensitivity

指導教授 : 張所鋐
共同指導教授 : 蘇志中
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用化學氣相沉積法(CVD)成長雙層石墨烯,轉印在手機保護貼上製作單片石墨烯應變感測器。之後,將兩片石墨烯重疊轉印在手機保護貼上製作雙片石墨烯應變感測器,並利用精密移動平台在轉印過程中控制兩片石墨烯在手機保護貼上重疊的距離,以控制實驗參數。我們將石墨烯應變感測器置於可彎曲基板上,給予一端位移使基板彎曲產生應變,利用應變規量出石墨烯應變感測器黏貼處的應變,最後利用安捷倫半導體分析儀做其電阻之量測。 根據電阻量測結果,對石墨烯應變感測器施加應變後,改變了石墨烯的有效傳輸距離,其電阻值也隨之改變,正應變越大其電阻也變得越大。而應變感測器的靈敏度可由應變規因子(gage factor)觀察,本研究得出的gage factor也有隨著起始電阻變大而增加的趨勢。並且在相同面積下,本研究利用重疊兩片石墨烯,製作出靈敏度較只有一片石墨烯高的應變感測器。

並列摘要


In this work, bi-layer graphene is grown by CVD and then transferred to mobile phone protective film to produce single graphene film strain sensor. Later on, another graphene is transferred to mobile phone protective film to produce double graphene films strain sensor. The important variable, overlapping length of two graphene layers, is controlled by transferring process on micro precision stage. Graphene strain sensors are placed on a bendable substrate and a fixed displacement is applied on one edge of the substrate. The strain where sensors are placed and resistance are measured by strain gauge and digital multimeter separately. Based on measurement results, resistance and effective transmission length change when the strain is applied so the resistance gets larger by increasing the strain. The sensitivity of strain sensors is determined by gauge factor. In this work, the relationship between resistance and gage factor is monotonic. In addition, double-film strain sensors have higher sensitivity than single-film strain sensors do.

參考文獻


[42] 蕭于哲, "常壓雙層石墨烯的成長與研製," 碩士, 機械工程學研究所, 臺灣大學, 台北市, 2014.
[2] X. Dong, B. Li, A. Wei, X. Cao, M. B. Chan-Park, H. Zhang, et al., "One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition," Carbon, vol. 49, pp. 2944-2949, 2011.
[3] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature, vol. 438, pp. 201-204, 2005.
[4] M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, "Energy band-gap engineering of graphene nanoribbons," Physical review letters, vol. 98, p. 206805, 2007.
[5] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008.

延伸閱讀