透過您的圖書館登入
IP:34.227.191.136
  • 學位論文

手持裝置擷取影像自動計算區分多種菌落

Automatically Count and Classify Multiple Colonies on Mobile Device Captured Images

指導教授 : 黃乾綱
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究的目的在發展一個手機應用程式,利用手機拍照,自動計算照片中的菌落總數與區分類別,取代人工計數,效率低落且費時之問題。市面上雖有自動計算菌落之儀器,但使用條件限制繁多。目前手機與平板裝置已是廣泛普及的工具,如何開發一套自動計算與區分菌落App 程式,讓研究人員可以隨時利用隨身的手持裝置拍攝菌落照片,無需設定參數,即自動辨識照片中菌落種類數並且計算出各種類分別的菌落數與總和,是本研究的最終目標。 本研究的研究議題涵蓋兩大部分,第一部分在區分影像中的前景(菌落)與背 景(培養基及其他)。針對手持裝置的攝影結果中可能存在的各種雜訊,提出解決方案。使用影像分割的局部偵測方式,以及顏色特性來區分前景與背景。第二個部分是自動區分菌落種類以及計算各類的菌落數。在此方法中,我們在CIELAB色彩空間中針對第一部分所篩選出的前景,利用K-means 分群法區分菌落,並對每群菌落建立特徵,再針對剩下未確定的區域,找出可能忽略的菌落,最後計算出菌落總個數與類別。 本研究的成果包含建立兩組效能比較資料集以及一個系統化的比較工具,第一組資料集共33 張,為使用手機拍攝的菌落照片,雜訊較多,第二組資料集共49 張,為OpenCFU 提供的開放資料,無雜訊。兩個資料集均包含一個菌落及多種菌落。本研究所發方法效能,(1)菌落偵測能力,於第一組資料集的表現,平均F 度量值可達到71.6%,在第二組資料集的表現,平均F 度量值達到91.7%,整體平均F 度量值達83.6%左右;(2)多種菌落分群能力,平均F 度量值達91.5%,平均芮氏指標達92.6%。無論(1)或(2),相對於現有之相關研究或工具(Colony Counter v1.0、OpenCFU、CFU Scope),實驗數據都顯示本研究的方法為最優。

並列摘要


The purpose of this study is to develop a mobile app that can automatically count and classify multiple bacteria colonies to solve the low efficiency and time consuming manual counting problems. Although there are many automatic colony counting instruments, they suffered from many limitations. Currently, mobile devices are widely spread. Therefore, the goal is to develop an mobile app which can automatically count and classify colonies. The user can take the photos and use the app to identify colonies for summing up the total number without setting any parameter. This study includes two parts, the first part is to distinguish foreground (colonies) and background (agar and others). We propose methods for isolate the noise from photographs taken by handheld device. A small region (region of interest) detection method and the color characteristics are used in proposed approach to distinguish foreground and background. The second part is to automatically classify different colony types and count total number of colonies in each types. To classify the colonies in the foreground image extracted in first part, we use the values of CIELAB color space of the image as the features, and use K-means clustering algorithm to classify these images. Furthermore, we establish the colony characteristic model for each type of colonies to rescan the uncertain areas, and sums up to the total number for every colony. In this study, we established two groups of dataset for efficacy comparison and a systematical comparison tool. The first dataset group includes 33 pictures that taken by handheld devices with many noises. The second dataset group includes 49 pictures obtained from OpenCFU open dataset with no noise. Both of the two datasets include single colony species and multiple colony species. The proposed approach achieved the followings: (1) the average F-measure of colony detection can achieve 71.6% in the first dataset, 91.7% in the second dataset and results to the overall accuracy 83.6%, (2) the average F-measure of multiple colony classification can achieve 91.5% and the average rand index (RI) values reaches 92.6%. Compare to the existing studies or tools (Colony Counter v1.0, OpenCFU, CFU Scope), the proposed approach performs the best.

參考文獻


19. 張証凱, 基於智慧型手機自動菌落計數系統. 臺灣大學工程科學及海洋工程學研究所學位論文, 2013: p. 1-56.
3. Lin, S.-F., H.-T. Chen, and Y.-H. Lin, Automatic Counting Cancer Cell Colonies using Fuzzy Inference System. Journal of Information Science and Engineering, 2011. 27(2): p. 749-760.
7. 簡岳銘, 透過影像辨識技術完成自動菌落計數 App. 臺灣大學工程科學及海洋工程學研究所學位論文, 2015: p. 1-66.
4. Men, H., et al. Application of support vector machine to heterotrophic bacteria colony recognition. in Computer Science and Software Engineering, 2008 International Conference on. 2008. IEEE.
5. Men, H., et al. Counting method of heterotrophic bacteria based on image processing. in 2008 IEEE Conference on Cybernetics and Intelligent Systems. 2008. IEEE.

被引用紀錄


林宣佑(2017)。靜態影像中樣式的發現與計數〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342%2fNTU201702599

延伸閱讀