透過您的圖書館登入
IP:3.141.8.247
  • 學位論文

高透明性聚醯亞胺混成複合材料合成與光電應用之研究

Synthesis and Characterization of Highly Transparent Polyimide Hybrid Materials for Optoelectronic Applications

指導教授 : 劉貴生

摘要


本論文分成六個章節,第一章為總體序論。第二章由一新的簡便合成方法來合成含有羥基可溶性Polyimidothioethers(PITEs)並由其製備polyimidothioethers-奈米晶二氧化鈦(PITEs-TiO2)且具有高的二氧化鈦含量(~50wt%)和厚度達15±3um的光學膜。此外,透明可繞的聚醯亞胺-奈米晶二氧化鈦(PI/TiO2)的混合具有高的二氧化鈦含量(~50wt%)和厚度達15±3um的光學膜由新的可溶性含有羥基之聚醯亞胺Polyimide(PI)所製備而成。羥基在PITEs和PI的骨幹可以提供有機-無機鍵結點並且通過控制丁醇鈦/羥基的莫耳比來製備獲得均勻之混成溶液。由此方法可成功獲得可繞有機無機混成膜,並擁有良好的表面平坦性,熱尺寸穩定性,可調諧的折射率(1.63至1.80,在633nm波長下),和高的光學透明度。基於此系列之有機無機複合膜所製備三層抗反射塗層具有在可見光範圍內小於0.5%的反射率,顯示其潛在的光學應用性。 然而,在所獲得之PI-TiO2的光學穿透度光譜中顯示,因TiO2的能隙(3.2eV)使得在400 nm波長的穿透度有明顯得減少,而導致複合膜有淡黃色的顏色。所以,在此有機-無機混摻系統中,選擇之無機材料不僅需要能夠提升折射率,更為重要的是能夠保有原PI的光學透明度。因此,第三章成功製備出高熱穩定性含二氧化鋯的聚醯亞胺混成膜(PI/ZO2),且具有優良的光學透明性。所得到的ZrO2奈米粒子不僅可以良好地分散在聚醯亞胺基材中,此PI/ZO2複合薄膜也顯示了優異的光學透明度,可調諧的折射率和阿貝數,分別高達1.804和32.18,這對於光學元件是至關重要的。此外,由於ZO2具有較大的能隙,故PI/ ZO2混合膜對比於相應的PI/ TiO2系統在可見光區域也表現出高阿貝數和透明性。因此,本研究表明,PI/ ZO2複合薄膜具有更優異的優點來應用於光學元件上。 第四章則由, 4’-bis(4-amino-3-hydroxyphenylthio)diphenylsulfide (3SOH-DA) 二胺和4,4’-(hexafluoroisopropylidene)diphthalic anhydride (6FDA)二酸酐合成出一種新穎的可溶液加工的具有羥基鍊側基和含硫之poly(o-hydroxy-imide) 3SOH-6FPI並應用於記憶體元件上。為了提高元件的記憶行為,導入不同量的TiO2於3SOH-6FPI中並探討TiO2的含量相應的元件記憶行為。混成膜中由不同TiO2含量0wt%至50wt%明顯增其記憶時間,由DRAM,SRAM至WROM的可調控記憶時間之存儲元件且具有高的開/關電流比(108)。另外,由電流-電壓IV特性的結果顯示,結晶相的TiO2擁有更高的電荷捕集能力,使元件在ON的狀態有更長的停留時間。 在第五章中,更進一步設計及合成一系列含有具有羥基鍊側基和含硫之聚醯亞胺3SOH-RPI,且由導入不同拉電子能力的二酸酐(CHDA < 6FDA < DSDA)到聚醯亞胺主鍊上,而得到相對應的記憶體儲存行為(None, DRAM, SRAM)。且為了提高元件的記憶行為,導入不同含量的ZrO2於3SOH-RPI中並探討ZrO2的含量相應的元件記憶行為。此外,也比較由含有不同HOMO和LUMO能階的ZrO2和TiO2導入混摻系統中,來比較相同無機含量下,對元件記憶行為的影響。第六章節為結論。

並列摘要


This study has been separated into six chapters. Chapter 1 is general introduction. In Chapter 2, a new facile synthetic route were developed to prepare flexible polyimidothioethers-nanocrystalline-titania (PITEs/TiO2) and polyimides–nanocrystalline-titania (PIs/TiO2) hybrid optical thin films with high titania content up to 50 wt% and thickness of 15 µm. The hydroxyl groups at the backbone of the PITEs and PIs could provide the organic-inorganic bonding sites and resulted in homogeneous hybrid solutions by controlling the mole ratio of titanium butoxide/hydroxyl group. The flexible hybrid films were successfully obtained and revealed good surface planarity, thermal dimensional stability, tunable refractive index (1.63 to 1.80 at 633 nm), and high optical transparency. In addition three-layer anti-reflection coating based on the hybrid films was prepared and showed a low reflectance 0.5% in the visible range indicated its potential on optical applications. However, the optical transparency of the obtained PI/TiO2 hybrid films reduced dramatically at wavelength around 400 nm attributed to the low band gap of TiO2 (3.2 eV), resulting in pale yellow color of the hybrid films. Thus, by choosing species of inorganic materials in the hybrid system for enhancing the refractive index without optical transparency in visible light region is an important issue. Therefore, chapter 3 describes the novel thermally stable zirconia-containing polyimides (PI/ZrO2) with excellent optical properties have been prepared successfully. Thus, the zirconia nanoparticles were well dispersed in polyimide matrix. The obtained flexible PI/ZrO2 hybrid films revealed excellent optical transparency, tunable refractive index and Abbe number up to 1.804 and 32.18, respectively. In addition, the PI/ZrO2 hybrid films also exhibit higher Abbe number and transparency in visible light region than the corresponding PI/TiO2 system due to larger energy band gap of ZrO2. Thus, the study demonstrates the PI/ZrO2 film based on its advantages and potential is more superior for optical application. In the other hand, chapter 4 introduce a novel solution-processable sulfur-containing poly(o-hydroxy-imide) 3SOH-6FPI with pendant hydroxyl groups and the corresponding polyimide 3SOH-6FPI/TiO2 hybrids were synthesized from the diamine 4,4’-bis(4-amino-3-hydroxyphenylthio)diphenylsulfide (3SOH-DA) and 4,4’-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), for memory application. To enhance the memory behavior, different amounts of TiO2 were introduced into 3SOH-6FPI and investigated the corresponding tunable memory properties. The resulting hybrid films having different TiO2 concentration from 0 wt% to 50 wt% exhibited electrically programmable digital memory properties from DRAM, SRAM, to WROM with high ON/OFF current ratio (108). Furthermore, according to the results of the current-voltage I-V characteristics, the crystalline phase of titania reveals higher trapping ability to increase the retention time at the ON state. In order realize the switching mechanism of 3SOH-6FPI/TiO2 hybrids memory devices, molecular simulation and electrode effect were also discussed in this study. Moreover, chapter 5 describes the series solution-processable sulfur-containing poly(o-hydroxy-imide)s 3SOH-RPI with pendant hydroxyl groups and the corresponding 3SOH-RPI/ZrO2 PI hybrids were synthesized from the diamine 3SOH-DA and dianhydrides of CHDA, 6FDA, and DSDA, respectively, for memory application. By introducing acceptors with different electron-withdrawing capability (CHDA < 6FDA < DSDA) into polyimide backbones, the obtained polymer memory devices show the memory behaviors of None, DRAM, and SRAM, respectively. In order to facilitate and enhance the memory effects, different amounts of ZrO2 were incorporated into 3SOH-RPI to investigate the corresponding memory properties. Moreover, in order to deeply confirm the memory switching mechanism of 3SOH-RPI/ZrO2 hybrids, the devices fabricated both from PI/ZrO2 and PI/TiO2 hybrid films were used to demonstrate the effect of LUMO energy level of ZrO2 and TiO2 on the memory characteristics and retention time in this study. Chapter 6 conclusions.

參考文獻


CHAPTER 1
1. G. Odian, Principples of Polymerization, 4th, 1.
5. R. W. Lauver, J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 2529.
10. (a) H. Manami, M. Nakazawa, Y. Oishi, M. Kakimoto, Y. Imai, J. Polym. Sci. Part A: Polym. Chem., 1990, 28, 465. (b), N. Avella, G. Maglio, R. Palumbo, F. Russo, M. C. Vignola, Macromol. Chem. Rapid Commum., 1993, 14, 545. (c), S. H. Hsiao C. P. Yang, J. C. Fan, Macromol. Chem. Phys., 1995, 196, 3041. (d) G. Maglio, R. Palumbo, M. C. Vignola, Macromol. Chem. Phys., 1995, 196, 2775. (e) S. H. Hsiao, C. H. Yu, J. Polym. Res., 1996, 3, 247. (f) S. H. Hsiao, H. Y. Chang, J. Polym. Sci. Part A: Polym. Chem., 1996, 34, 1421. (g) S. H. Hsiao, C. F. Chang, J. Polym. Sci. Part A: Polym. Chem., 1996, 34, 1433. (h) S. H. Hsiao, P. C. Huang, Macromol. Chem. Phys., 1997, 198, 4001. (i) S. H. Hsiao, P. C. Huang, J. Polym. Sci. Part A: Polym. Chem., 1997, 35, 2421. (j) J. P. Critchley, M. A. White, J. Polym. Sci. Polym. Chem. Part A-1, 1972, 10, 1809. (k) V. L. Bell, B. L. Stump, H. Gager, J. Polym. Sci. Polym. Chem. Ed., 1976, 14, 2275. (l) W. A. Feld, B. Ramalingam, F. W. Harris, J. Polym. Sci. Polym. Chem. Ed., 1983, 21, 319. (m) N. D. Ghatge, B. M. Shinde, U. P. Mulik, J. Polym. Sci. Polym. Chem. Ed., 1984, 22, 3359. (n) S. H. Hsiao, C. P. Yang, J. C. Fan, J. Polym. Res., 1994, 1, 345. (o) S. H. Hsiao, C. P. Yang, C. K. Lin, J. Polym. Res., 1995, 2, 1. (p) S.Tamai, A. Yamaguchi, M. Ohta, Polymer, 1996, 37, 3683. (q) S. H. Hsiao, P. C. Huang, J. Polym. Res., 1997, 4, 183.
11. (a) F. Akutsu, M. Inoki, M. Sawano, Y. Kasashima, K. Naruchi, M. Miura, Polymer, 1998, 39, 6093. (b) G. C. Eastmond, J. Paprotny, R. S. Irwin, Polymer, 1999, 40, 469. (c) S. H. Hsiao, C. F. Chang, Macromol. Chem. Phys., 1996, 197, 1255. (d) S. H. Hsiao, K. Y. Chu, J. Polym. Sci. Part A: Polym. Chem., 1997, 35, 3385. (e) S. H. Hsiao, C. P. Yang, S. H. Chen, Polymer, 2000, 41, 6537. (f) S. H. Hsiao, K. H. Lin, Polymer, 2004, 45, 7877. (g) S. H. Hsiao, C. P. Yang, K. Y. Chu, Macromolecules, 1997, 30, 165. (h) M. Hasegawa, N. Sensui, Y. Shindo, R. Yokota, Macromolecules, 1999, 32, 387. (i) H. B. Zheng, Z. Y. Wang, Macromolecules, 2000, 33, 4310. (j) P. M. Hergenrother, K. A. Watson, J. G. Smith Jr, J. W. Connell, R. Yokota, Polymer, 2002, 43, 5077. (k) Q. X. Li, X. Z. Fang, Z. Wang, L.-X. Gao, M. X. Ding, J. Polym. Sci. Part A: Polym. Chem., 2003, 41, 3249. (l) C. L. Gao, X. E. Wu, G. H. Lv, M. X. Ding, L. X. Gao, Macromolecules, 2004, 37, 2754. (m) X. Z. Fang, Q. X. Li, Z. Wang, Z.-H. Yang, L.-X. Gao, M. X. Ding, J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 2130. (n) S. H. Hsiao, K. H. Lin, J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 331.

延伸閱讀