透過您的圖書館登入
IP:18.191.234.191
  • 學位論文

基於光學同調斷層掃描之流式細胞儀技術

Flow Cytometry Technique Based on Optical Coherence Tomography

指導教授 : 楊志忠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本論文中,我們使用一套光學同調斷層掃描系統來掃描流過微流道的細胞樣品,並計算相應M-mode影像的時間相關常數。在培養癌細胞時,我們加入5和10%濃度的酒精來傷害細胞,使得細胞分別處於凋亡和壞死的過程。在不同的細胞死亡過程中,細胞的時間相關常數隨培養時間的變化趨勢不同,這種不同能幫助我們瞭解細胞死亡過程中的形態變化。我們也讓細胞吞食金奈米環顆粒,以增強細胞的光散射強度。通過實驗我們發現,時間相關常數主要由細胞或者細胞碎片在幾百奈米尺度的表面光滑度決定。與10%酒精培養的細胞不同,經過5%酒精培養的細胞在7小時後時間相關常數上升,這可能表明細胞凋亡最後階段形成的凋亡小體的表面光滑度比細胞壞死形成的細胞碎片的表面光滑度高。細胞吞食金奈米環的主要作用是提高光學同調斷層掃描系統的訊號強度和訊噪比。

並列摘要


Cell samples flowing along a microfluidic tube are scanned with an optical coherence tomography (OCT) system and their correlation times in M-mode scans are calibrated. In particular, the variations of correlation time with waiting time after 5 and 10 % ethanol are applied to the cell samples are compared for understanding the evolution of cell morphology in the cell death pathways of apoptosis and necrosis, respectively. Also, Au nanorings (NRIs) are taken up by cells for increasing the scattering strength in OCT scanning. It is found that the calibrated correlation time is mainly controlled by the surface smoothness of cells or cell fragments in a scale of several hundred nm. The increasing trend of correlation time at 7 hours after 5 % ethanol application, which is different from that in the case of 10 % ethanol application, implies that the surface smoothness of the apoptotic bodies formed at the final stage of an apoptosis process is higher than that of the cell fragments formed at the final stage of a necrosis process. The major function of Au NRI uptake by cells is to enhance OCT signal intensity and hence increase the signal-to-noise ratio.

並列關鍵字

OCT correlation time apoptosis necrosis

參考文獻


[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[2] D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. C. Fujimoto, “Three-dimensional endomicroscophy using optical coherence tomography,” Nature Photonics 1, 709-716 (2007).
[3] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003).
[5] R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006).
[6] R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines⁄s,” Opt. Lett. 31, 2975-2977 (2006).

延伸閱讀