透過您的圖書館登入
IP:18.191.236.174
  • 學位論文

結合聲子晶體反射體之單埠板波共振器研製

Design and Fabrication of a One-Port Phononic Plate Wave Resonator

指導教授 : 吳政忠

摘要


聲子晶體是由數種彈性材料在空間中週期性排列而成,當聲波在此結構中傳遞時,由於波傳模態在某頻率範圍出現不連續的現象,使該頻段內聲波無法傳遞,此現象稱之為聲波頻溝(acoustic band gap)。本研究即利用此頻溝現象,配合數值分析及微機電製程,探討以聲子晶體為反射體之共振器的共振現象。 本文以布拉格(Bloch)理論為基礎,並結合有限元素法(finite element method, FEM)建立週期性邊界條件,分析聲子晶體之頻散關係。此外,藉由計算延遲距離(delay distance)探討等效反射面在共振腔內之位置,進而最佳化共振器之共振效果。本文也同時探討共振腔內相鄰反對稱共振模態之頻率間隙,並利用超晶格技術(supercell technique)分析其頻率間隙與共振腔長度之關係。 在實驗方面,本研究亦成功研製出具正方晶格聲子晶體反射體之矽─氧化鋅複合薄膜單埠板波共振器,其實驗結果與數值模擬相當吻合;如數值分析所預期,對於兩相異共振腔長度的共振器,亦量測到不同數目之頻率響應,驗證了共振腔長度與共振模態之頻率間隙的關係。此外,量測結果顯示,此共振器在共振頻率159.08 MHz處,具有相當高的品質因數(quality factor)。

並列摘要


This thesis reports numerical analysis and experimental results of a one-port plate wave resonator using two-dimensional phononic crystal (PC) gratings. Based on the band gap effect of the PC, i.e. acoustic waves in a specific frequency are blocked by the PC, PC was utilized as the reflectors of a resonator. The dispersion relations of phononic crystals were calculated by using the finite element method (FEM). To optimize the resonance inside the cavity, the effective reflective plane was obtained through a series of numerical simulations. Attention has been also focused on frequency differences between the lowest anti-symmetric (A0) modes within a resonant cavity. The relation between the cavity length and the frequency difference was analyzed by supercell technique. On the experimental side, one-port ZnO/Si plate wave resonators with square-lattice PC reflective gratings were fabricated. The measured resonant frequencies of the cavity are in a good agreement with the numerical predictions. In addition, the measurement result showed that a high Q factor of 3885 can be achieved at 159.08 MHz resonant frequency.

參考文獻


[1] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of Periodic elastic composites,” Phys. Rev. Lett. 71, 2022-2025, 1993.
[2] R. Sainidou, B. Djafari-Rouhani, and J. O. Vasseur, “Surface acoustic waves in finite slabs of three-dimensional phononic crystals,” Phys. Rev. B 77, 094304, 2008.
[3] Y. Tanaka and S. I. Tamura, “Surface acoustic waves in two-dimensional periodic elastic structures,” Phys. Rev. B 58, 7958, 1998.
[4] F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sánchez-Dehesa, C. López, and J. Llinares, “Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal,” Phys. Rev. B 59, 12169, 1999.
[5] T. T. Wu, Z. G. Huang, and S. Lin, “Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy,” Phys. Rev. B 69, 094301, 2004.

延伸閱讀