透過您的圖書館登入
IP:3.14.72.80
  • 學位論文

類沸石咪唑骨架(ZIF-8)薄膜:介面合成法之設計及氣體(二氧化碳/氮氣)分離效能之提升

Zeolitic Imidazolate Framework-8 (ZIF-8) Membranes: Rational Design of Interfacial Synthesis and Enhanced Performance of Gas (CO2/N2) Separation

指導教授 : 吳嘉文

摘要


金屬有機框架薄膜有應用於氣體分離的潛力,但是傳統製備金屬有機框架薄膜的方法為多重步驟且於高壓條件下合成。在此論文中,發展一可靠且一步驟之介面合成法於低壓條件下製備多孔α-氧化鋁圓盤基材支撐之類沸石咪唑骨架(ZIF-8)薄膜。藉由研究三種反應參數:反應時間、反應溫度、二甲基咪唑/正辛醇溶液濃度,取得無缺陷之類沸石咪唑骨架(ZIF-8)薄膜。以場發射掃描式電子顯微鏡觀察類沸石咪唑骨架(ZIF-8)薄膜於不同參數下之成長。反應時間12小時、反應溫度攝氏80度、50體積毫莫耳濃度之二甲基咪唑/正辛醇溶液濃度,為最佳化之參數。合成之類沸石咪唑骨架(ZIF-8)薄膜接著被應用於二氧化碳/氮氣氣體分離,具有最高之分離因子5.49,二氧化碳氣體透過率0.47 × 10-7 mol m-2 s-1 Pa-1。在其他基材支撐之純類沸石咪唑骨架(ZIF-8)薄膜之中,此研究中取得之提升後之分離效能為目前最高,因為此類沸石咪唑骨架(ZIF-8)薄膜為無缺陷及熱穩定。

並列摘要


Metal-organic framework (MOF) membranes are potentially useful in gas separation applications, but conventional methods for preparing MOF membranes are multi-steps and under high-pressure synthetic conditions. In this thesis, a reliable one-step interfacial synthesis under atmospheric pressure has been developed for preparing zeolitic imidazolate framework-8 (ZIF-8) membranes supported on porous α-Al2O3 disks. To obtain defect-free ZIF-8 membranes, three reaction parameters were investigated: reaction time, reaction temperature, and concentration of 2-methylimidazole/1-octanol solution. Growth of ZIF-8 membranes under various parameters was observed with field-emission scanning electron microscope (FE-SEM). The optimized parameters were found to be: reaction time of 12 hours, reaction temperature of 80 °C, and concentration of 2-methylimidazole/1-octanol solution of 50 mM. The synthesized ZIF-8 membranes were then applied to CO2/N2 gas separation with a maximum separation factor of 5.49 and CO2 gas permeance of 0.47 × 10-7 mol m-2 s-1 Pa-1. The enhanced separation performance obtained in this study has been the highest so far among other supported pure ZIF-8 membranes, which can be attributed to the defect-free and thermally stable ZIF-8 membranes.

參考文獻


1. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'keeffe and O. M. Yaghi, Accounts of Chemical Research, 2001, 34, 319-330.
2. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'keeffe and O. M. Yaghi, Science, 2002, 295, 469-472.
7. J. Caro and M. Noack, Microporous and Mesoporous Materials, 2008, 115, 215-233.
11. T.-S. Chung, L. Y. Jiang, Y. Li and S. Kulprathipanja, Progress in Polymer Science, 2007, 32, 483-507.
12. S. Qiu and G. Zhu, Coord. Chem. Rev., 2009, 253, 2891-2911.

延伸閱讀