透過您的圖書館登入
IP:52.54.111.228
  • 學位論文

含烯烴基之金屬亞乙烯基化合物的製備與化學反應

Preparation and Chemical Reactions of Metal Vinylidene Complexes Pending with Olefinic Functionality

指導教授 : 林英智

摘要


論文中,我們成功的合成多種丙烯醇、丙烯醚與雙烯炔基化合物。(2, 6,6-dimethyl-4-ethynyl-octa-1,7-dien-4-ol; 4, 3-allyloxy-5,5-dimethylhept-6-en-1-yne; 6, 3-(2-methylallyloxy-5,5-dimethylhept-6-en-1-yne; 26a, 6,6-dimethyl-4-ethynyl-octa-1,7-dien-4-ol; 26b, 6,6-dimethyl-2- methyl-4-ethynyl-octa-1,7-dien-4-ol ) 我們也利用含有環戊二烯基鋨或釕金屬與上述化合物以適當的比例合成一系列含有環戊二烯基鋨或釕金屬亞乙烯基錯合物。由丙烯醇化合物2 與環戊二烯基釕金屬於甲醇下反應生成陽離子釕金屬亞乙烯基錯合物 [Ru]{=C=CHCH(OMe)CH2C(Me)2CH=CH2}[PF6] (7),並發現錯合物7在純化的過程中,配基上的甲氧基會脫去得到錯合物 [Ru]{=C=CHCH=CHC(Me)2CH=CH2}[PF6] (10a)。而將丙烯醇化合物2在室溫下與環戊二烯基釕金屬於二氯甲烷下反應,則可得到錯合物10a 與錯合物[Ru]{-C≡CCH(PPh3)CH2C(Me)2CH=CH2}[PF6] (11)的 混 合 物 。 將錯合物10a和鹼反應可生成錯合物 [Ru]-C≡CCH=CHC(Me)2CH=CH2 (9-trans)。同樣地,類似的錯合物 [Os]-C≡CCH=CHC(Me)2CH=CH2 (9b) 也可以利用相同的方式生成。陽離子金屬亞乙烯基錯合物 [M]{=C=CRCH=CHC(Me)2CH=CH2}[PF6] (12, R = CH2CH=CH2, 13, R = CH2C≡CH, 14, R = (Ph)C=C(CN)2, 15a, R = CH2C(O)OMe, 15b, R = CH2C(O)OEt) 可以由鋨或釕金屬乙炔基化合物[M]-C≡CCH=CHC(Me)2CH=CH2 (9a, M = Ru; 9b, M = Os) 和一系列鹵烷進行烷化反應得到。錯合物 13a 和環戊二烯基釕金屬以一比一的比例在過量的NH4PF6的存在下,可製備得雙釕金屬亞乙烯基錯合物16aa。利用相同的方法,另外兩種具有亞甲基橋鍵之雙金屬亞乙烯基錯合物{[M1]=C=C(CH=CHC(Me)2CH=CH2)CH2CH=C=[M2]}[PF6]2 (16ba, M1 = Os, M2 = Ru; 16bb, M1 = Os, M2 = Os)也可被合成。錯合物15能藉由nBu4NOH的加入而進行去質子反應,形成釕金屬呋喃化合物[Ru]-C=C(CH=CHC(Me)2CH=CH2)CH=C(O)OR (17a, R = Me; 17b, R = Et)。將錯合物17用甲苯溶掉並於高溫下迴流,會發現錯合物17會脫去一個三苯膦基並同時進行開環反應,形成一個配基具有3η鍵結方式的錯合物(Cp)Ru[Ph2PC6H4{3η-CHC(CH=CHC(Me)2CH=CH2)CHC(O)OR}]Cl (18a, R = Me; 18b, R = Et)。進一步地,將錯合物18b 與一當量的氫氯酸反應,可順利得到錯合物 (Cp)Ru[Ph2PC6H4{2η-CHC(CH=CHC(Me)2CH=CH2)CH2C(O)OEt}]Cl (19)。 將錯合物19 繼續與第二當量的氫氯酸反應的狀況下,新穎的釕金屬(Ⅳ)錯合物(20)可被得到。當18b質子化的酸換成HBF4,錯合物18b可生成陽離子釕金屬錯合物(21)。錯合物21從單晶X射線繞射分析中發現,錯合物21同時具有氧配位與雙鍵π配位鍵結至釕金屬中心上。當環戊二烯基釕金屬與丙烯醚在二氯甲烷當溶劑的條件底下,意外的發現碳烯基釕金屬錯合物[Ru]{=CHCH=CHCH2C(Me)2CH=CH2}[PF6] (22) 的生成。並嘗試將碳烯基金屬錯合物22與不同的鹼反應,進而生成不同的產物[Ru]-CH=CHCH=CHC(Me)2CH=CH2 (23)與 [Ru]-CH=CHCH(OMe)CH2C(Me)2CH=CH2 (24)。我們也嘗試的將錯合物22與二氰甲烷反應,順利的得到 [Ru]-{CH=CHCH(CH(CN)2)CH2C(Me)2CH=CH2} (25)。除此之外,我們將上述的丙烯醇2與丙烯醚 (4, 6) 化合物嘗試與環戊二烯基鋨金屬反應,不同於釕金屬的化學反應,在鋨金屬的反應中只會生成鋨金屬亞乙烯基錯合物[Os]{=C=CHCH=CHC(Me)2CH=CH2}[PF6] (10b),並沒有碳烯基鋨金屬錯合物的生成。至於雙烯炔基化合物的部分,環戊二烯基釕金屬與雙烯炔基化合物 26a或26b 反應,經由芳香化反應後可得錯合物27。

並列摘要


The reactivity of a series of cationic metal alkenyl-vinylidene complexes of ruthenium and osmium containing the cyclopentadienyl and phosphine ligand are explored. The methoxyvinylidene complex [Ru]{=C=CHCH(OMe)CH2C(Me)2CH=CH2}[PF6] (7, [Ru] = (η5-C5H5)(PPh3)2Ru) was prepared by treatment of propargyl alcohol 2 with [Ru]-Cl in the presence of excess NH4PF6 in MeOH. Complex 7 in CH2Cl2 afforded the alkenyl-vinylidene complex [Ru]{=C=CHCH=CHC(Me)2CH=CH2}[PF6] (10a). When CH2Cl2 was used as a solvent system for the reaction of [Ru]-Cl with compound 2, the mixture of complex 10a and alkenyl-phosphonio complex [Ru]-{C≡CCH(PPh3)CH2C(Me)2CH=CH2}[PF6] (11) were obtained. At higher temperature, complex 10a is the predominant product. With external free phosphine as PPh3 source, complex 11 was obtained exclusively. From the reaction of 10a with NaOMe or Al2O3, the ruthenium acetylide complex [Ru]-C≡CCH=CHC(Me)2CH=CH2 (9-trans) was obtained. Similarly, the osmium acetylide complex [Os]-C≡CCH=CHC(Me)2CH=CH2 (9b) was also acquired by the depronation of complex 10b. Besides, the cationic metal vinylidene complexes [M]{=C=CRCH=CHC(Me)2CH=CH2}[PF6] (12, R = CH2CH=CH2, 13, R = CH2C≡CH, 14, R = (Ph)C=C(CN)2, 15a, R = CH2C(O)OMe3, 15b, R = CH2C(O)OCEt) were prepared by the alkylation reactions of the acetylide complexes [M]-C≡CCH=CHC(Me)2CH=CH2 (9-trans, M = Ru, 9b, M = Os). Reaction of the terminal alkynyl group of complex [Ru]{=C=C(CH2 C≡CH)CH=CHC(Me)2CH=CH2}[PF6] (13a) with [Ru]-Cl afforded the dinuclear bisvinylidene complex {[Ru]=C=C(CH=CHC(Me)2CH=CH2)CH2CH=C=[Ru]}[PF6]2 (16aa). Then complex [Os]{=C=C(CH2C≡CH)CH=CHC(Me)2CH=CH2}[PF6] (13b) was reacted with [Ru]-Cl and excess NH4PF6 in methanol at reflux to yield the dinuclear vinylidene complex {[Os]=C=C(CH=CHC(Me)2CH=CH2)CH2CH=C=[Ru]}[PF6]2 (16ba) under nitrogen atmosphere. Another dinuclear vinylidene complex {[Os]=C=C(CH=CHC(Me)2CH=CH2)CH2CH=C=[Os]}[PF6]2 (16bb) was synthesized by a similar method. Deportonation of complexes [Ru]{=C=C(CH2COOR)CH=CHC(Me)2CH=CH2}[PF6] (15a, R = Me, 15b, R = Et) in the presence of nBu4NOH gave neutral furyl complexes [Ru]-C=C(CH=CHC(Me)2CH=CH2)CH=C(O)OR (17a, R = Me, 17b, R = Et). When complexes 17a and 17b in toluene were heated to reflux under nitrogen for two day, the furyl complexes completely transformed into complexes 18 with an allylic ligand binding to the ruthenium center in a η3 binding mode. Treatment of complex 18b with HCl (1M, in diethyl ether) afforded the neutral complex (Cp)Ru[Ph2PC6H4{2η-CHC(CH=CHC(Me)2CH=CH2)CH2C(O)OEt}]Cl (19). Furthermore, treatment of complex 19 with HCl afforded a new Ru(IV) complex (20). Complex 18b also was protonated via HBF4 to yield complex 21 without coordination of a chloride ligand. Treatment of [Ru]-Cl with propargyl ether 4 or 6 in presence of NH4PF6 in CH2Cl2 afforded the ruthenium alkenyl-alkylidene complex [Ru]{=CHCH=CHCH2C(Me)2CH=CH2}[PF6] (22). Complex 22 in the presence of Al2O3 transformed to yield [Ru]-CH=CHCH=CHC(Me)2CH=CH2 (23). Complex 22 was also reacted with NaOMe to yield [Ru]-CH=CHCH(OMe)CH2C(Me)2CH=CH2 (24). The product from treatment of complex 22 with sodium methoxide is not the same as the product obtained from passing complex 22 through a neutral Al2O3 column. The neutral alkenyl complex 24 was obtained in good yields in MeOH. The methoxy group of complex 24 is considered as a good leaving group and is eliminated leading to complex 23 under basic condition. Treatment of complex 23 with malononirtile in CH2Cl2 led to the neutral alkenyl complex [Ru]-{CH=CHCH(CH(CN)2)CH2C(Me)2CH=CH2} (25) which was formed by addition of malononitrile to 23. Differently, treatment of [Os]-Br ([Os] = (η5-C5H5)(PPh3)2Os) with propargyl alcohol 2 or propargyl ether 4 and 6 in the presence of excess NH4PF6 in MeOH or CH2Cl2 generated exclusively the osmium alkenyl-vinylidene complex [Os]{=C=CHCH=CHC(Me)2CH=CH2}[PF6] (10b). We also successfully synthesized 6,6-dimethyl-4-ethynyl-octa-1,7-dien-4-ol dieneyne 26a and 6,6- dimethyl-2-methyl-4-ethynyl-octa-1,7-dien-4-ol 26b which can be regarded as a combined 1,5-enyne and 1,6-enyne. The σ-arene complexes 27 were obtained from the mixture of [Ru]-Cl, NH4PF6 and dieneyne compounds 26a or 26b in MeOH. The formation of σ-arene complexes 27 is via a cyclization of the dienylvinylidene complexes.

並列關鍵字

Ruthenium vinylidene ortho-metalation reaction furyl

參考文獻


76. Ting, P. C.; Lin, Y. C.; Cheng, M. C.; Wang, Y. Organometallics 1994, 13, 2150-2152.
118. Ting, P. C.; Lin, Y. C.; Lee, G.H.; Cheng, M. C.; Wang, Y. J. Am. Chem. Soc. 1996, 118, 6433-6444.
105. Yen, Y. S.; Lin, Y. C.; Huang, S. L.; Liu, Y. H.; Sung, H. L.; Wang, Y. J. Am. Chem.Soc. 2005, 127, 18037-18045.
78. (a) Huang, C. C.; Lin, Y. C.; Huang, S. L.; Liu, Y. H.; Wang, Y. Organometallics 2003, 22, 1512-1518. (b) Liu, C. W.; Lin, Y. C.; Huang, S. L.; Cheng, C. W.; Liu, Y. H.; Wang, Y. Organometallics 2007, 26, 3431-3439.
67. (a) Myers, L. K.; Langhoff, C.; Thompson, M. E. J. Am. Chem. Soc. 1992, 114, 7560-7561. (b) Kaharu, T.; Matsubara, H.; Takahashi, S. J. Mater. Chem. 1992, 2, 43-47. (C) Lavastre, O.; Even, M.; Dixneuf, P. H.; Pacreau, A.; Vairon, J. Organometallics 1996, 15, 1530-1531. (d) Wu, I.; Lin, J. T.; Luo, J.; Sun, S.; Li, C.; Lin, K. J.; Tsai, C.; Hsu, C.; Lin, J. Organometallics 1997, 16, 2038-2048.

延伸閱讀