透過您的圖書館登入
IP:13.59.9.236
  • 學位論文

以內照式蜂巢式反應器光降解苯酚廢水

Remediation of phenol in wastewater by internally illuminated monolith reactor

指導教授 : 吳紀聖

摘要


苯酚是世界主要水汙染物之一,常用於染色、樹脂合成上的工業用途,存在於工業廢水中,對於環境造成嚴重的危害。本研究以溶凝膠法製備TiO2,將TiO2覆膜在蜂巢狀陶瓷載體上,為了避免觸媒掉進載體孔洞中造成觸媒浪費,TiO2覆膜多層在蜂巢狀陶瓷載體上,並鍛燒於500 oC至形成銳鈦晶相,由SEM圖可以得知,覆膜三次後,觸媒均勻附著於載體表面。蜂巢式反應器中,於載體的每一個通道內置入PMMA(Poly(methyl methacrylate))側面發光光纖,光可經由光線傳送並照射到觸媒表面,在光纖的側面鑿洞以增加側面發光強度,以可固定深度的切割器固定切割深度,並於將光纖尾端接觸反應器內不鏽鋼面,增加光反射,經過光纖照明實驗,對於經過表面處理的光纖,可以增加30.7%的光強度。以此實驗裝置進行苯酚水溶液降解反應,以4-氨基安替比林直接光度法將溶液變色,並利用UV-Vis分光光度計進行苯酚濃度的測量,進而得到轉化率。光源為200W汞燈,光強度為2 W/cm2。由液相批次反應器可以內照明蜂巢式反應器的理想滯留時間為180分鐘,且TiO2觸媒優於含金屬Mn的TiO2觸媒,可以得到最大轉化率0.259。

並列摘要


Phenol is one of the major waster water pollutants in the world and wildly used in dye, resin synethsis industry. In the research, sol-gel prepared TiO2 was coated on the monolith multiple times to form multilayer structure. The catalyst was calcined to transform into anatase state at 500 °C. From SEM images, uniform catalyst layer can be achieved by multiple times of coating. PMMA(Poly(methyl methacrylate)) with caves which can increase the side emission of light were put inside each channel of monolith. The depth of each cave was kept constant by a modified cutter. The end of each fiber contacted with the inner side of the reactor’s stainless steel wall, which was provided as a reflective plane to enhance the light irradiation. From the results of optical fiber illumination experiment, the light intensity can be enhaced for 30.7% for cutted optical fibers. The light source was a 200 W mecury lamp to provide 2 W/cm2 light intensity. The batch reactor’s experimental results showd the best residence time for the internally illuminated monolith reactor system is 180 minutes. TiO2 catalyst shows better performance that Mn loaded TiO2 catalyst. The conversion achieved 0.259 with UVA light intensity of 2 W/cm2 at 25°C.

並列關鍵字

Monolith reactor TiO2 photocatalyst Phenol

參考文獻


9. J. C. Lee, M. S. Kim, C. K. Kim, C. H. Chung, S. M. Cho, G. Y. Han, K. J. Yoon and B. W. Kim, Removal of paraquat in aqueous suspension of TiO2 in an immersed UV photoreactor. Korean Journal of Chemical Engineering, 20 (2003) 862-868.
1. D. M. Phairat Usubharatana, Amornvadee Veawab, and Paitoon Tontiwachwuthikul, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. Industrial and Engineering Chemistry Research, 45 (2006) 2558-2568.
2. A. Kudo, Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 7 (2003) 31-38.
3. M. N. Chong, B. Jin, C. W. Chow and C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res, 44 (2010) 2997-3027.
4. A. Furube, T. Asahi, H. Masuhara, H. Yamashita and M. Anpo, Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy. Chemical Physics Letters, 336 (2001) 424-430.

延伸閱讀