透過您的圖書館登入
IP:3.234.177.119
  • 學位論文

紫質合成及其染料敏化電池之研究

Synthesis of Porphyrin and Their Application in Dye Sensitized Solar Cell

指導教授 : 劉緒宗
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文成功使用對稱的四苯基紫質(meso-tetraphenylporphyrin,TPP)為起始物,合成出三系列具有羧酸之不對稱紫質,並完成其結構鑑定與光電物理性質分析。運用於染料敏化電池中,除熔合紫質外,β位雙取代與擁擠紫質皆獲得不錯之轉換效率(2.144~5.266%)。 B3aZn~B3cZn在TPP的β位進行修飾,經過溴化、耦合、Vilsmerier和Knoevenagel反應,得到以氰基丙烯酸為拉電子基,鄰位具有不同推電子基之D-π-A紫質。推電子基分別為phenoxy (B3aZn)、methoxyphenylsulfanyl (B3bZn)與phenylselenyl (B3cZn)。過程中,β位的推電子基可以幫助Vilsmerier反應進行,得到鄰位的單一產物。三者吸收光譜相似,與TPP相比,Soret吸收帶僅略微變寬且紅移19 nm。隨著推電子能力的增加 (Se> S> O),HOMO電位變小,進而得到較小的HOMO-LUMO能階。用於元件中,因推-拉電子基彼此靠近,造成吸附量降低。同時無法完整的將二氧化鈦覆蓋,使其與電解液產生接觸,開路電壓下降。而B3aZn雖然吸附量是三者中最低的,但因為非垂直吸附於二氧化鈦上,具有完整的覆蓋,所以得到最大的開路電壓。也因為染料整齊的排列,讓激發的電子可以有效的傳遞,短路電流也是最大,整體轉換效率達到3.371%。 調整反應順序,由β位具有拉電子基的2-醛基紫質(p3)開始,可以控制溴化的位向,得到12-溴2-醛基紫質。接續耦合和Knoevenagel反應可得到對位的D-π-A紫質(B4-1Zn)。吸收光譜較TPP紅移27 nm,與B3aZn 擁有相似的HOMO-LUMO能階。用於元件中,染料整齊排列,有效隔絕電解液與二氧化鈦的接觸,暗電流驅動電壓增大。相較B3aZn,短路電流與開路電壓皆獲得提升,轉換效率達到5.115%。 擁擠紫質經由四溴紫質與Suzuki反應得到,過程中可以發現對硼酸基質的限制非常多。一但同時產生單、雙、三以及四取代之產物,便無法利用管柱層析或其他方法分離。擁擠紫質HOMO-LUMO能階相較TPP小,吸收光譜紅移。用於電池中,三者元件的效率接近(5.121~5.266%)。在β位增加的苯環衍生物易造成擁擠紫質π-π堆疊,染料無法交錯的堆積於二氧化鈦上。因吸附量偏低,元件的短路電流並無顯著的提升。也因為無法有效阻隔電解液和二氧化鈦的接觸,因此開路電壓增加有限。 含有茚熔合紫質(E3Zn)的合成由單溴紫質經分子內環化、Vilsmerier和Knoevenagel反應獲得。其吸收光譜明顯紅移、變寬,吸收光譜幾乎涵蓋整個可見光區域(350~750 nm)。但其平面結構與較差的溶解度,造成聚集。影響元件之轉換效率,僅有3.734%。 鋅喹啉熔合紫質(F6Zn)的合成由二溴硝基紫質經由分子內環化、Stille與Sonogashira反應得到。其Soret吸收帶產生分裂,因為乙炔基延伸其共軛長度,最大吸收可達494 nm。與一般紫質染料相比,HOMO電位明顯變小。元件的效率僅有2.036%,IPCE值僅有21% (500 nm),加上暗電流驅動電壓偏低。推測應是其平面結構產生聚集,加上電解液與二氧化鈦產生接觸造成。鎳喹啉熔合紫質(F6Ni),雖然改善F6Zn穩定性的問題,其吸收光譜明顯的藍移並且broaden。較短的再結合壽命,造成其轉換效率非常的低(0.138%)。

關鍵字

紫質 染料敏化電池

並列摘要


Three series of asymmetry porphyrin with carboxylic acid were synthesized from symmetry meso-tetraphenylporphyrin (TPP) successfully. The corresponding porphyrin have been fully characterized via various spectroscopic methods and analyse of their electrochemical properties. By using these dyes in dye sensitized solar cell (DSSC), except fused porphyrin, β-substitute D-π-A and crowded porphyrin have moderate energy conversion efficiency (2.144~5.266%). A new series of regioselective-substitute porphyrin (B3aZn~B3cZn) anchoring electron donor (D, phenoxy, methoxyphenylsulfanyl or phenylselenyl) and acceptor (A, cyanoacrylic acid) are synthesized from TPP following bromination, coupling, Vilsmerier and Knoevenagel reaction. The donor group can control Vilsmerier reaction happen in ortho-position. Both compounds have similar absorption spectra, and show the typical characteristic of intense Soret band near 435 nm and less intense Q-bands near 565 and 610 nm. They are red-shifted with respect to TPP about 19 nm. Increasing the donating ability (Se> S> O), decreasing the gap of HOMO and LUMO. These porphyrin are then explored to fabricate in DSSC. The donor is close to acceptor, cause by the lower surface coverage. B3aZn compact absorb on TiO2, block the approach of the electrolyte to the TiO2 surface, that have the highest Voc and Jsc than others. The corresponding to an overall efficiency of energy conversion is 3.371%. To adjust the synthetic route, start from 2-formyl porphyrin (p3). The acceptor can control the bromination happen in para-position. 12-bromo-2-formyl porphyrin following the coupling and Knoevenagel reaction can obtain the para-compound (B4-1Zn). The absorption spectrum has red-shifted with respect to TPP about 27 nm, and the similar HOMO-LUMO gap with B3aZn. The cells yield broaden and higher IPCE (470 nm, 55%), due to compact orientation, block the contact between TiO2 and electrolyte efficiently. As a result, decent energy conversion efficiency up to 5.115%. Crowded porphyrin (C3aZn~C3cZn) are synthesized from tetrabromopor- phyrin following by Suzuki coupling. The selection of boronic acid is critical, if the reaction obtain mono-, di-, tri-, and tetra-substitutes simultaneously, that can’t separated by column chromatography or other methods. Due to the distortion of porphyrin ring, decreasing the gap of HOMO and LUMO, with red-shifted absorption compare to TPP. Besease the enhancement of aromatic ring will increase the π-π stack, that can’t compact absorb on TiO2. The lower dye loading and can’t block the approach of the electrolyte to the TiO2 surface efficiently, that device have similar energy conversion efficiency between 5.121~5.266%. Indene fused porphyrin (E3Zn) is synthesized from monobromoporphyrin following the intramolecular cyclization, Vilsmerier and Knoevenagel reaction. The absorption spectrum is red-shifted and broaden over the whole visible region (350~ 750nm). But the coplanar structure and poor solubility, cause dye aggregated increase, that influence the efficiency only 3.734%。 Zinc quinolined fuse porphyrin (F6Zn) is synthesized from dibromo nitro- porphyrin following the intramolecular cyclization, Stille and Sonogashira coupling. The split Soret band reach to 494 nm due to the ethynyl extend. To compare to other common porphyrin, the potential for the first oxidation alters dramatic to the negative. The efficiency is only 2.036%, due to the aggregation and poor coverage on TiO2. The IPCE only 21% at 500 nm and dark current onset potential is very low. The nickle quinoline fuse porphyrin (F6Ni) has good stability, but the short recombination lifetime cause the efficiency very low (0.138%).

並列關鍵字

porphyrin dye sensitized solar cell

參考文獻


75. (a) Dolphin, D. Ed., The Porphyrins, Vol. III; Academic Press. New York, 1978; (b) Gouterman, M. Optical Spectra and Electronic Structure of Porphyrins and Related Rings; Academic Press, New York, 1978. (c) 陳智慧, 高雄醫學大學藥學系研究所碩士論文-金屬紫質的線性與非線性吸收光學之探討, 2001. (d) 林旺進, 高雄師範大學化學系研究所碩士論文-拉電子基對雙環紫質錯合物物性之影響, 2002.
27. Campbell, W. M.; Jolley, K. W.; Wagner, P.; Wagner, K.; Walsh, P. J.; Gordon, K. C.; Schmidt-Mende, L.; Nazeeruddin, M. K.; Wang, Q.; Grätzel, M.; Officer, D. L. J. Phys. Chem. C 2007, 111, 11760-11762.
28. (a) Tanaka, M.; Hayashi, S.; Eu, S.; Umeyama, T.; Matano, Y.; Imahori, H. Chem. Commun. 2007, 2069-2071; (b) Hayashi, S.; Tanaka, M.; Hayashi, H.; Eu, S.; Umeyama, T.; Matano, Y.; Araki, Y.; Imahori, H. J. Phys. Chem. C 2008, 112, 15576-15585.
31. (a) Lee, C.-W.; Lu, H.-P.; Lan, C.-M.; Huang, Y.-L.; Liang, Y.-R.; Yen, W.-N.; Liu, Y.-C.; Lin, Y.-S.; Diau, E. W.-G.; Yeh, C.-Y. Chem. Eur. J. 2009, 15, 1403-1412; (b) Hsieh, C.-P. Lu, H.-P.; Chiu, C.-L.; Lee, C.-W.; Chuang, S.-H.; Mai, C.-L.; Yen, W.-N.; Hsu, S.-J.; Diau, E. W.-G.; Yeh, C.-Y. J. Mater. Chem. 2010, 20, 1127-1134; (c) Bessho, T.; Zakeeruddin, S. M.; Yeh, C.-Y.; Diau, E. W.-G.; Grätzel, M. Angew. Chem. Int. Ed. 2010, 49, 6646-6649; (d) Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629-634.
11. Mohmeyer, N.; Kuang, D.; Wang, P.; Schmidt, H.-W.; Zakeeruddin, S. M.; Grätzel, M. J. Mater. Chem. 2006, 16, 2978-2983.

延伸閱讀