透過您的圖書館登入
IP:18.222.121.170
  • 學位論文

量子點結合奈米金原子應用於細胞內分子傳遞路徑之研究

Quantum Dots Combined Nanogold Apply to Detect the Dynamic Routes of Molecule in Cells

指導教授 : 黃義侑

摘要


奈米尺度的量子點擁有優越的光學性質,它有獨特的發光特性、光學穩定性、可調整的發光波長、較窄的螢光放射光譜和很寬吸收光譜,因此量子點能取代傳統的有機染劑或放射性同位素標定,提供一個用來研究藥物和基因傳遞的有效工具。 在本篇論文中利用量子點來標定細胞吞噬軌跡,作為偵測BHK細胞的傳遞路徑與動態,量子點會經由細胞的胞噬作用攝入細胞內,我們可以利用奈米金原子抑制 (quench) 量子點螢光來清楚的分辨出是細胞內或細胞外的螢光,並減少螢光影像上所產生的雜訊,實驗結果顯示當量子點進入細胞時,螢光會聚集在細胞核的周遭,但並不會進到核中,我們利用 NLS 修飾量子點來增強量子點進入細胞和細胞核的效率。在這個研究中,量子點是一個有彈性且實用的實驗平台。 量子點可在活細胞內做長時間且多重的標定,並希望能發展一個結合生物相容性量子點和顯微影像的系統,提供藥物、基因傳遞跟癌症診斷在病理學上連續長效時間的重要資訊。

並列摘要


Quantum dots holds remarkable optical characteristics as a consequence of their nano-length scale. They uniquely feature bright, photostable, tunable and narrow fluorescence emissions and broad absorption spectra. Therefore, quantum dot provides a promising tool to investigate drug and gene delivery instead of a standard fluorophore or radiolabel. In this study, we have used quantum dots as markers for phagokinetic tracks to determine the delivery routes and motility of BHK cells. Quantum dots will be uptake by cells easily through endocytosis. We can clearly differentiate the QDs outside the cell or inside the cell by quenching the QDs with similar size of nanogolds and reduce the noise of fluorescent image. Experiments results showed that when QDs entering into the cell, they will accumulate around the nucleus, but did not enter into the nucleus. Coupling the QDs with Nuclear Localization Signal (NLS) can enhance the translocation rate of QDs into cell and cell nucleus. The biocompatible quantum dot platform presented in this study is especially flexible and robust. Quantum dots could be loaded into living cells for long-term, multicolor labeling. We hope we can develop a system combined with biocompatible quantum dots and microscopy imaging system to provide key information over a continuum of length scales and pathologies in drug/gene delivery and in tumor diagnosis.

並列關鍵字

quantum dot nanogold NLS

參考文獻


[1] Arakawa, Y. and Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett. 1982, 40, 939
[2] Wei, Q. H.; Bechinger, C.; Leiderer, P. Single-File Diffusion of Colloids in One-Dimensional Channels, Science 2000, 287, 625.
[3] Mao, M. H. ; Wu, T. Y. ; Wu, D. C. ; Chang, F. Y. and Lin, H. H. Relaxation oscillations and damping factors of 1.3 μm In(Ga)As/GaAs quantum-dot lasers, Optical and Quantum Electronics 2004, 36, 10.
[4] Etourneau, J.; Portier, J. and Menil, F. The role of the inductive effect in solid state chemistry. How can the chemist play with it in order to modify the structural and the physical properties of the materials, J. of Alloys and Compounds, 1992, 188, 1-7
[5] Kayanuma, Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape, Phys. Rev. B 1998, 38, 9797.

延伸閱讀