透過您的圖書館登入
IP:3.133.159.224
  • 學位論文

水楊酸對提升花卉作物溫度逆境耐受性之研究

Alleviation of Temperature Stress in Ornamental Plants by Salicylic Acid

指導教授 : 張育森

摘要


台灣花卉生產不僅會遭遇度夏困難、產量及品質不良問題,並需克服冬季及初春寒流來襲可能導致生長發育受阻、開花延遲及寒害等問題。氣候變遷影響導致溫度逆境發生頻繁已漸為常態,為積極尋求溫度逆境下作物栽培的因應對策,擬針對水楊酸(salicylic acid, SA)可提高植物溫度逆境耐受性之特性,探討SA是否可提高四季秋海棠等花卉作物對溫度逆境的耐受性。 在SA提高四季秋海棠耐熱性方面:四季秋海棠‘Super Olympia’以SA灌注處理後移入高溫(35/30℃),從葉綠素螢光讀值(Fv/Fm及Fm)結果顯示:SA (25-400 μΜ)處理均可提高耐熱性,尤以100 μM灌注處理表現最為明顯,且SA對除花的植株提升耐熱性效果較不除花植株效果佳。施用方式無論以葉面噴施或灌注處理,其Fv/Fm及Fm值均高於對照組;兩者間效果隨品種花色不同雖有差異,大致以灌注處理較噴施者效果佳。水楊酸施用時間上,以高溫逆境前(2天前、當天)處理比高溫逆境後2天處理,其提高耐熱性效果較佳。相較於對照組,高溫下以SA (100、400 μΜ)灌注較健壯,高溫第2天後的F0明顯較低,Fv/Fm明顯較高。另於常溫下以SA (400 μΜ)噴施或灌注處理後4及24小時,葉溫會有明顯差異,灌注處理組葉溫均為最低。顯示SA有效濃度作用時似有降低葉溫以提高耐熱性的趨勢。穴盤苗於高溫下噴施SA (100、200、400 μΜ),RI (Relative Injury)及MDA (Malondialdehyde)明顯較對照組為低,而SA (800、1600 μΜ)則有相反的效果。SA (100 μΜ)處理明顯熱保護期約可達5天,該期間植株有較對照組為低的F0、RI、及MDA值,及較高的Fm及Fv/Fm值;因此,每週追加處理1次,施用次數增加為2-3次,可明顯降低四季秋海棠高溫逆境(35/30℃)後的RI及MDA值,增加保護效果,並顯著提高植株株高及開花數。 在快速評估SA有效濃度方面:由於SA具有相當明顯的濃度效應,是以如何建立SA有效濃度範圍快速評估方法,成為重要課題。四季秋海棠成株先以SA (0、100、400、1200 μM)處理,配合葉綠素螢光讀值及生育狀況觀察,確認提高耐熱性有效濃度為100至400 μM之間,尤以100 μM為佳。另利用穴盤苗噴施SA (0、100、200、400、800、1600 μΜ)後,置於烘箱55℃高溫處理2小時;或移入日/夜溫35/30℃三週後即進行測定RI及MDA值。結果顯示:55℃處理2小時組以100、200、400 μΜ為有效濃度,35/30℃、3週處理組以100、200 μΜ為有效濃度;由此可見,利用穴盤苗進行較短時間高溫處理,與移植苗較長時間高溫處理所篩選的有效濃度相似,符合快速評估原則。接續以非洲鳳仙穴盤苗噴施SA (0、100、200、400、800、1600 μM),進行55℃高溫處理2小時及35/30℃人候室3週2項處理,由其RI值顯示:提高耐熱性的有效濃度均為200、400 μM。為印證其有效性,將非洲鳳仙移植苗處理SA (0、100、200 μM)後,移入高溫(35/30℃)人候室,從其葉綠素螢光讀值顯示:200 μM處理F0明顯低於對照組,Fm及Fv/Fm均明顯高於對照組,印證200 μM確為有效濃度。因此,利用穴盤苗及較高溫度(55℃)短時間(2小時)處理,進行提高植株耐熱性有效濃度的快速評估方法,不僅可適用於四季秋海棠,亦可適用於非洲鳳仙上。 在SA提高彩葉草耐熱性方面:彩葉草以SA (200-1600 μM)處理,經高溫(45/40℃)1天後,其中以200 μM處理的Fv/Fm值最高,且RI值最低;而1600 μM處理組Fv/Fm明顯較對照組為低,且RI及MDA值最高。SA (200 μM, pH 3.7)處理組的Fv/Fm明顯較對照組和SA (200 μM, pH 6.4)為低,且RI值大幅提高,顯示熱害嚴重,因此SA施用前應先調整酸鹼值達6.0以上。種子繁殖系‘Wizard Sunset’品種以SA (200 μM)可有效維持初期1-2天較高的Fv/Fm值,惟後續仍有明顯熱害,難以恢復。營養繁殖系‘Defiance’品種於高溫逆境(40℃,2天)下,以SA (200 μM)最能減少Fv/Fm值下降,外觀無明顯熱害,CaCl2 (10 mM)及CaCl2+SA雖也可減少Fv/Fm值下降,但外觀仍受熱害影響,顯示SA和CaCl2混合施用無加成效果。SA高溫前2天及當天處理有利耐熱性提高,高溫後2天則外觀受熱害嚴重。高溫下彩葉草‘Wizard Jade’品種葉面噴施SA (100、200 μΜ)及灌注SA (200 μΜ)處理組均較對照組有較低的葉片溫度,其中SA (200 μΜ)降幅較大;而‘Wizard Sunset’品種不管是葉面噴施或灌注SA處理組均無明顯降溫效果。 在SA提高火鶴花耐熱性方面:火鶴花‘Essencia’品種植株以SA (100、200、400 μM)、CaCl2 (4、8、12 mM)、SA (200 μΜ) +CaCl2 (8 mM)處理,結果顯示:SA (100、200 μM)或CaCl2 (12 mM)或SA (200 μΜ)+CaCl2(8 mM)組合等處理均可提高Fv/Fm值及量子產量,其中以水楊酸(200 μΜ)效果最佳;而水楊酸及氯化鈣兩者合用似無加成效果。‘蘿莎’品種小苗葉片噴施SA(200 μΜ)與SA(100 μΜ)+CaCl2(8 mM)處理後,SA(200 μM)處理組的Fv/Fm值自高溫結束後即明顯較對照組為高,而SA(100 μΜ)+ CaCl2(8 mM)處理組則第4天才明顯高於對照組。顯示SA確可提高火鶴花高溫逆境耐熱性,其有效濃度約200 μΜ。 在SA提高四季秋海棠及火鶴花耐寒性方面:四季秋海棠‘Super Olympia’穴盤苗噴施SA ( 400、800、1000 μM)後經低溫逆境(0℃,2小時),各濃度RI值均低於對照組,其中以1000 μM的RI值最低,但SA濃度達1600 μM則有反效果。火鶴花‘Pistache’品種以SA (500、1000、2000 μM)、CaCl2 (4、8、12 mM)、SA (1000 μM)+ CaCl2(8 mM)處理後移入低溫(15/13℃),各處理組與對照組的Fv/Fm值均呈下降趨勢,至第3週才開始回升;從其Fv/Fm、淨光合作用、葉片受損比率等測值顯示:SA(500 μM)可提高耐寒性,但當SA濃度達1000 μM或以上時則有反效果,SA (1000 μM)添加CaCl2 (8 mM),並無法改善耐寒性,甚至添加後還導致新葉寛度變狹。火鶴花‘Tropical’品種以SA (400、800、1600 μM)、CaCl2 (4、8、12 mM)、SA (800 μM)+ CaCl2 (8 mM)處理,其Fv/Fm及量子產量均高於對照組,Fv/Fm最高值為CaCl2 (8 mM),其次依序為CaCl2 (4 mM)、CaCl2 (12 mM)、SA (1600 μM)、SA (800 μM)、SA (400 μM)及SA (800 μM)+ CaCl2 (8 mM);組合施用並無加成效果。提昇耐寒性的效果似以CaCl2 (8 mM)較SA為佳,SA濃度以800、1600 μM的效果較明顯,但SA (800 μM)+ CaCl2(8 mM)組合施用並未有加成效果。另以不同藥劑組合試驗得知:SA (1000 μM)+ CaCl2 (8 mM)+ KH2PO4 (0.3 %)的Fv/Fm值最高、且葉綠素計讀值較高和葉片細胞膜熱傷害率明顯較對照組為低。 總而言之:SA不管是提高耐熱性(四季秋海棠、非洲鳳仙、彩葉草、火鶴花)或耐寒性(四季秋海棠、火鶴花)均證實有其效果,但兩者有效濃度隨著植物種類、品種或生育階段等而有所不同;但過高濃度均會引起反效果。SA提高耐熱性所需濃度一般較低,約在400 μM以下;而提高耐寒性所需濃度一般較高,約在500 μM以上。利用穴盤苗及較高溫度(55℃)短時間(2小時)處理,進行提高植株耐熱性有效濃度的快速評估方法,已證實適用於四季秋海棠及非洲鳳仙上,應具有應用潛能。SA添加CaCl2的效果在提高耐熱性及耐寒性各項試驗中,均無加成的作用,但在提高火鶴花耐寒性的試驗中,複合配方SA (1000 μM)+ CaCl2 (8 mM)+ KH2PO4 (0.3 %)則效果良好,顯示再增加營養劑等組合,可能會有更好的提高抗耐性之效果,此可提供未來研發作物抗逆劑時的有用參考。

關鍵字

水楊酸 花卉作物 溫度逆境

並列摘要


The ornamental plants often suffer from hot summer and cold winter in Taiwan. How to alleviate temperature stresses in plants has been an important topic nowadays. Since salicylic acid (SA) has proved to enhance temperature stress tolerance in many plants, this study evaluates the potential of salicylic acid on alleviation of high- and low-temperature stresses. The treatments of SA at 25, 100 and 400 μM for 2 hours prior to heat shock (35/30℃, 16 days) enhanced thermoprotection of wax begonia ‘Super Olympia’ with higher Fv/Fm and lower F0 values, especially 100 μM drench treatment on the plants without flowers. Both medium drench and foliar spray treatments improved heat tolerance of wax begonias. SA treatments by medium drench enhanced more thermoprotection than those by foliar spray, based on the higher Fm and Fv/Fm value. SA treatment prior to heat stress was more effective than that after heat stress. Plant leaf temperature arose significantly while 4 and 24 hours after SA treatment, especially drench treatment did. We assume that SA treatments could induce thermotolerance, decrease leaf temperature and initiate series metabolism involved in overcoming high temperature injury. Wax begonia ‘Super Olympia’ plug seedlings were treated with 25, 100, 400, 800, or 1600 μM SA before 55℃heat stress for 2 hours. Results indicated that 25- 400 μM SA enhanced heat tolerance of plants by reducing the values of relative injury (RI) and malondialdehyde (MDA), whereas 800, 1600 μM SA had adverse effects. The thermoprotection period of 100 μM SA maintained significantly 5 days long, based on the lower values of F0, RI and MDA, and the higher values of Fm and Fv/Fm. Applying times up to 2 or 3 times extended significantly protective effect, based on the fact of reducing the values RI and MDA, increasing plant height and number of flowers. For rapid assessment of the SA effective concentration, we established the system of using plug seedlings treated with short heat stress (55℃, 2 h) instead of using mature plants treated with long heat stress (35/30℃, 3 weeks). Results showed that two systems had similar SA effective concentration in both wax begonia and impatient plant.Therefoe it proved that the rapid assessment system is feasible. Coleus treated with 0, 200, 400, 800, 1600 μM SA before heat stress (45/40℃, 1 days). Results indicated that 200 μM SA treatment had maximum Fv/Fm value, minimum RI value and none heat damage, but 1600 μM SA treatment showed adverse effects, lower Fv/Fm value and higher RI and MDA values significantly. Before treatment of SA, the solution should be adjusted to about pH 6, because plants treated with SA at pH 3.7 showed significantly lower Fv/Fm value and higher RI value than those at pH 6.4. Coleus ‘Wizard Sunset’ treated with 200 μM SA could effectively maintain the initial 1-2 days of high Fv/Fm values, but then heat damage appeared irreversibly. Coleus ‘Defiance’ applied with 200 μM SA had higher Fv/Fm values and improved heat tolerance. Addition of CaCl2 and SA did not prove additive effect. SA pre-heat-stressed treatment improved more effectively heat tolerance of coleus as when compared with the post-heat-stressed treatment. The leaf temperature of coleus ‘Wizard Jade’ plants reduced after they were sprayed with 100, 200 μΜ SA or drenched with 200 μΜ SA. Especially treatments drenched with SA 200 μΜ showed the lowest leaf temperature. But SA treatment of the other cultivar ‘Wizard Sunset’ had not the same significant cooling effect. The result may coincide with that 200 μΜ SA treatment on coleus ‘Wizard Sunset’ improved heat tolerance insignificantly. Heat-stressed anthurium ‘Essencia’ pre-treated with SA (100, 200,400 μM), CaCl2 (4, 8, 12 mM), and 200 μΜ SA+ 8 mM CaCl2, results showed pre-treated with 100, 200 μM SA, 12 mM CaCl2, and 200 μΜ SA+ 8 mM CaCl2 had higher Fv/Fm value and quantum yield, especially SA 200 μΜ alone treatment. Addition of CaCl2 and SA showed no additive effect. Heat-stressed anthurium ‘Rosa’ treated with 200μM SA, and 100 μΜ SA+ 8 mM CaCl2. The results also showed 200μM SA treatment had higher Fv/Fm value. SA also could enhance cold-stressed tolerances in begonia and anthurium. Begonia ‘Super Olympia’ plug seedlings were sprayed with 400, 800, 1000, and 1600 μM SA before low temperature stress (0℃, 2 h), all treatments showed lower RI values than the control, especially the concentration of 1000 μM. On the contrary, the treatment with 1600 μM SA had adverse effect. Anthurium ‘Pistache’ plants were treated with SA (500, 1000, 2000 μM), CaCl2 (4, 8, 12 mM), and 1000 μM SA+ 8 mM CaCl2 before low-temperature stress (15/13℃), the Fv/Fm values of all treatments decreased in the 3 weeks initially. Based on the results of Fv/Fm values, net photosynthesis, leaf damage ratio values, 500 μM SA had more effective cold tolerance, but SA at a concentration at or above 1000 μM had adverse effect. Addition of CaCl2 and SA showed no additive effect. Anthurium ‘Tropical’ plants were treated with SA (400, 800, 1600 μM), CaCl2 (4, 8, 12 mM), and 800μΜ SA+ 8 mM CaCl2 treatments, all treatments showed the higher Fv/Fm and quantum yield values than the control. Compared the improvement of cold tolerance, the treatment of 8 mM CaCl2 is the most effective, and then the treatments of 4 mM CaCl2, 12 mM CaCl2, 1600 μM SA, 800 μM SA, 400 μM SA and 800 μM SA+ 8 mM CaCl2. Addition of CaCl2 and SA proved non-additive effect. Advanced test showed that: the treatment of 1000 μM SA+ 8 mM CaCl2+ 0.3% KH2PO4 show highest Fv/Fm value, and higher chlorophyll meter readings and lower RI value as compared to the other treatments and the control.

參考文獻


17. 林鈴娜、賴允慧、侯炳丞、張育森. 2008. 水楊酸處理提高四季秋海棠耐熱性. 臺灣園藝 54:275-286.
47. Bajguz, A. and S. Hayat. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47:1-8.
48. Blokhina, O., E. Virolainen, and K.V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91:179.
49. Clarke, S.M., L.A.J. Mur, J.E. Wood, and I.M. Scott. 2004. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J. 38:432.
50. Dat, J.F., C.H. Foyer, and I.M. Scott. 1998a. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 118:1455-1461.

被引用紀錄


吳承叡(2015)。環保聖誕紅盆花生產體系之建立〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.00059
張凱淳(2013)。水楊酸複合藥劑促進非洲鳳仙與四季秋海棠耐熱性之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.10591
張采依(2012)。薄層屋頂綠化植物選擇與應用之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2012.00593

延伸閱讀