透過您的圖書館登入
IP:18.222.125.171
  • 學位論文

熱浸鍍鋅鋼板鐵鋁障蔽層微結構分析

Microstructural Characterization of Fe-Al Inhibition Layer in Hot-Dip Galvanized Sheet Steel

指導教授 : 林招松
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


熱浸純鋅和鐵鋅合金鋼板因具有優異抗蝕性,廣泛應用於汽車車體和相關零組件,熱浸純鋅鋼板同時大量應用於建築、家電與五金工業。在最佳化熱浸鍍鋅製程開發時,必須同時建立有效且快速鑑定熱浸純鋅鍍層微結構的方法。 本研究即在建立一有效熱浸鋅鍍層微結構分析技術,藉以探討鋅浴鋁含量與溫度、鋼板入溫、熱浸時間對熱浸鋅鋼板界面微結構的影響。實驗結果顯示,在化學腐蝕後橫截面OM試片能觀察到Fe-Zn合金相,由鍍鋅層往內依序為ζ相和δ相,受限於解析力,OM下並無法觀察到Γ和Fe-Al相。然而,藉由橫截面TEM以及擇區電子繞射和低掠角XRD分析證實單一Fe2Al5相存在鋼板和純鋅之間,同時TEM/EDAX分析顯示在界面處鋁含量較高,Fe2Al5的形貌有顆粒狀和層狀兩種形式。另外,開路電位作為一個快速分析鐵鋁層是否存在的方法,除此之外,從開路電位曲線也可了解整個腐蝕過程並非均勻。另外,利用開路電位方法將熱浸鍍鋅上的各層用4% 鹽酸剝離後,可用SEM觀察其表面形貌和對各鍍層做低掠角XRD分析。 綜合以上實驗結果,在低鋅浴鋁含量下(0.12wt%),當鋅浴溫度、鋼帶入溫和熱浸時間三者值愈大,Fe-Al相轉換成Fe-Zn相程度愈大。在中、高鋅浴鋁含量 (0.16wt%、0.20wt%),Fe-Al障蔽層尚未合金化成Fe-Zn相下,鋅浴溫度或鋼帶入溫愈高,界面Fe-Al障蔽層厚度愈厚。

並列摘要


Hot-dip galvanized and galvanealed steel sheets have excellent corrosion resistance, and can be found in body panels and related components in the automobile industry. Large amounts of hot-dip galvanized steel plates are also used in structure, home appliances, and tool applications. To optimize the hot-hot dip galvanize process, it is essential to develop a quick and effective microstructural evaluation method. In this study, an effective technique to determine the effect of aluminum content in the zinc bath, bath temperature, strip entry temperature, and dip-time on the interface microstructure has been established. Results showed that Fe-Zn intermetallic compound can be observed in chemically color etched cross-sectional OM samples: ζ and δ were observed from the zinc coating towards the steel substrate. However, Γ and Fe-Al phases were not observed under OM due to its limited resolving power. In contrast, via cross-sectional TEM, selected area diffraction, EDAX, and GA-XRD analyses, higher aluminum content can be found at the zinc-steel interface in the form of granular and lamellar Fe2Al5 intermetallics. Also, open circuit potential can be a time-saving technique to analyze the presence of Fe-Al phase. Furthermore, the non-uniform corrosion behavior can be observed in the open circuit potential curve. Selective layer on the coating can be removed while performing open circuit potential in 4wt% HCl to observe each layer morphology and crystallinity in SEM and GA-XRD. In summary, when bath temperature, strip entry temperature, and hot-dip time increase, the extent of transformation from Fe-Al to Fe-Zn phases increases, in low aluminum content zinc bath (0.12 wt%). In mid-to-high aluminum content zinc bath (0.16 wt%, 0.20 wt%), in the condition that Fe-Al inhibition layer have not transformed to Fe-Zn intermetallics, the higher the bath or strip entry temperature, the higher thickness in the Fe-Al inhibition layer.

參考文獻


1. A. R. Marder, “The metallurgy of zinc-coated steel,” Progress in Mate. Sci., Vol. 45, 2000, pp. 191-271.
2. J. D. Culcasi, P. R. Sere′, C. I. Elsner, A.R. Di Sarli, “Control of the growth of zinc–iron phases in the hot-dip galvanizing process,” Surface and Coatings Technology, Vol. 122, 1999, pp. 21–23.
3. Y. Adachi and M. Arai, “Transformation of Fe–Al phase to Fe–Zn phase on pure iron during galvanizing,” Materials Science and Engineering A, Vol. 254, 1998, pp. 305–310.
4. Y. Morimoto, E. McDevitt and M. Meshii, “Characterization of the Fe-Al inhibition layer formed in the initial stages of hot-dip galvanizing,” ISIJ International, Vol. 37, 1997, pp. 906-913.
5. E. McDevitt, Y. Morimoto and M. Meshii, “Characterization of the Fe-Al interfacial layer formed in a commercial hot-dip galvanized coating,” ISIJ International, Vol. 37, 1997, pp. 776-782.

延伸閱讀