透過您的圖書館登入
IP:54.173.221.132
  • 學位論文

Ti50Ni50及Ti49.3Ni50.7鈦鎳形狀記憶合金變態及機械性能之研究

Transformation Behavior and Mechanical Properties of Ti50Ni50 and Ti49.3Ni50.7 Shape Memory Alloys

指導教授 : 吳錫侃

摘要


Ti49.3Ni50.7與Ti50Ni50 SMAs之PE、SME與超彈性應力應變循環等性能之提升作一系列的探討。Ti49.3Ni50.7合金經由300℃與400℃時效處理後,300℃ 者雖需較長時間才能達到最大硬度,但其硬度相較於400℃者大上許多,也因此300℃時效者具有較優異的PE、SME與超彈性應力應變循環性能。Ti50Ni50合金若未經任何熱機處理強化,其PE、SME與超彈性應力應變循環等性質都是表現最差的;但若經一定程度之冷軋延與低溫退火後其拉伸性質會大幅提升,甚至較Ti49.3Ni50.7 經400℃最大時效硬化者來的優異。冷加工量對TiNi合金的超彈性應力應變循環性能也有很大的影響,將Ti50Ni50合金施予0%、10%、20%、30%及40%之冷軋延後,發現冷軋延量小於20%者隨著循環次數的增加而逐漸轉變成線性超彈性,經過拉伸循環訓練後其儲能效率高但可儲存之能量小;冷軋延量大於20%者則不隨著循環次數的增加而有太大的改變,儲能效率稍差,但可儲存較大之能量;而冷軋延後之退火時間越長,材料的拉伸強度及應力應變循環表現越差,最好的條件為1 min退火;而退火時間太長者經應力應變循環時產生的差排累積,阻礙了相變態之發生,特別是R相變態的壓抑最為明顯。拉伸時之最大應變越大,材料的殘留應變越多,SIM逆變態越為困難,故超彈性在工程應用上其應變量不宜超過7%。在應變速率2.5×10-4s-1~1.0×10-2s-1的範圍內,於越快的應變速率下作超彈性之應力應變循環,循環對SIM之順變態的助益越明顯,但對SIM逆變態的影響則越有限;反之,若應變速率越慢,對SIM逆變態之助益則大於順變態者。

並列摘要


In this study, the property improvement of shape memory effect (SME), pseudoelasticity (PE) and stress-strain (σ-ε) cycling of Ti49.3Ni50.7 and Ti50Ni50 shape memory alloys (SMAs) is investigated. Ti49.3Ni50.7 SMA aged at 300℃×100h and 400℃×8h can reach the maximal precipitation-hardening with the hardness of the former being higher than that of the latter. Tensile test indicates that the specimen aged at 300℃×100h has better SME/PE and σ-ε cycling properties than that aged at 400℃×8h. Cold-rolling effect on the property improvement is studied on Ti50Ni50 SMA. Experimental results show that the degree of cold-rolling lower than 20% is insufficient to strengthen the SMAs to improve their properties, such as the σ-ε cycling stability and the recoverable storage energy in σ-ε curve. If the annealing of cold-rolled specimen is over, the SMAs’ properties can also be deteriorated. At the same time, the σ-ε cycling test indicates that, after 20th cycles, both R-phase and B19’ martensitic transformations are depressed due to the dislocations pile-up during the cycling, and the B2→R transformation is more depressed than R→B19’ one. In this study, the maximal PE strain induced by stress-induced martensite (SIM) is found to be lower than ~7% and the plasticity deformation occurs if the strain is higher than 7% which will deteriorate the SMAs’ PE property. For the strain rate (ε ̇) effect on the property improvement of Ti50Ni50 SMA, in the ε ̇ range of 2.5×10-4s-1~1.0×10-2s-1, the σ-ε cycling with higher ε ̇ will be more beneficial to the forward SIM transformation, instead of the reverse SIM transformation during the cycling.

參考文獻


89. 林耿華,國立台灣大學材料科學與工程學研究所碩士論文,2009
9. K. Takezawa and S. Sato, Trans. JIM (Supplement) 17 (1976) 233.
19. K. Otsuka, H. Sakamoto and K. Shimizu, Acta Metall., 27 (1979) 583.
26. K. Otsuka and K. Shimizu, Int’l Metals Reviews, 31 (1986) 93-114.
31. T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka, Trans JIM, 27 (1986) 731.

被引用紀錄


張晏綸(2016)。原子層沉積技術於鎳鈦形狀記憶合金表面改質之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342%2fNTU201601082
柯俊誼(2016)。鎳鈦合金於植入式醫療器材上的多種應用〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342%2fNTU201600896
匡載訢(2015)。時效對富鎳Ti48Ni52及Ti48.5Ni41.5Cu10形狀記憶合金相變態影響之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342%2fNTU.2015.01053
何建陞(2013)。富鎳Ti48.7Ni51.3及Ti48.4Ni51.6形狀記憶合金時效後之相變態與性能之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342%2fNTU.2013.00716
簡甄(2012)。富鎳Ti49Ni51形狀記憶合金時效後之相變態與性能最佳化之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342%2fNTU.2012.02983

延伸閱讀