透過您的圖書館登入
IP:3.137.183.14
  • 學位論文

陣列式壓電能量擷取系統之半自動化人機介面設計

Design of Multiple Piezoelectric Energy Harvesters System with Semi-automation User Interface

指導教授 : 舒貽忠

摘要


本研究導入LabVIEW程式開發半自動化監控系統將軟硬體整合為單介面觀測與控制,另改良並聯式電感同步切換開關介面電路 (P-SSHI)架構與發展偵測同步開關時機點的機制,進行陣列式壓電能量擷取系統的功率增幅與功率寬頻的改善。 本論文內容分為LabVIEW程式設計、實驗與數據分析等三部分。LabVIEW程式設計部分以LabVIEW輔助壓電能量擷取系統,使用單介面控制振動和同步開關訊號輸出、振動子訊號顯示與數據的擷取,與傳統的手動調整儀器與手寫紀錄數據相比,減少約50~75%的時間使用率和擁有較高的量測精度。 實驗部分以串聯和並聯陣列式之振動子組合搭配標準電路與P-SSHI電路的架構進行功率增幅與功率寬頻的發展。在功率增幅方面,堆疊三根振動子後功率增加約為單根的三倍效果,且P-SSHI電路對於功率增幅提供不錯的貢獻度。在功率寬頻改善方面,串聯或並聯陣列式標準電路的架構提供近70%的提升效果。另外從實驗中結果得知,無論在功率增幅或功率寬頻改善方面,採用並聯陣列式搭配P-SSHI電路有相當優異的效果,為最佳的設計組合。 數據分析部分以本研究與之前團隊的成果相比較後發現,壓電與介電的等效係數的差異對功率衰減的影響較低,然而力電耦合強度與共振頻差異度對功率衰減的影響大。同是共振頻差異2%的情況,力電耦合偏強的材料之輸出功率有20%衰減,優於力電耦合偏弱的材料之50%衰減。

並列摘要


The thesis introduces the Laboratory Virtual Instrumentation Engineering Workbench(LabVIEW) programming to integrate both hardware and software into a single interface for experimental facilitation. It also proposes an improvement on the control circuit of parallel-SSHI (Synchronized Switch Harvesting on Inductor) interface. Both techniques are applied to an array of piezoelectric energy harvesters with purposes on either power boosting or broadband improvement. The thesis consists of LabVIEW programming, experiment and data analysis. With LabVIEW programming applied to an array system, a single interface is introduced for controlling both signal output and data acquisition of oscillators and SSHI switch signals. As a result, it is found that compared to the traditional experimental framework with handwritten records, 50% to 75% of time can be saved and the accuracy of measurement on output signals is increased too. The proposed framework is applied to the case of the three piezoelectric oscillators connected to the standard or parallel-SSHI interfaces. When the resonance of each oscillator is almost identical, harvested power is almost three times higher than that of a single oscillator. On the other hand, bandwidth is improved for slightly differences in the resonance of each oscillator. The result shows 70% increase of bandwidth in the array system. In particular, the parallel connection of array system attached to the parallel-SSHI interface exhibits the best performance in both power boosting and wideband improvement. Finally, it is found that the deviations in piezoelectric and dielectric material constants of each oscillator have little effect on power reduction. In contrast, the electromechanical coupling factor and the deviations in resonance of each oscillator have crucial impact on the drop in peak power. The results show that under 2% deviation in resonance, there is 20% power reduction in an array system with high electromechanical coupling. However, harvested power is reduced to 50% for a weak electromechanical coupling system.

參考文獻


[1] 何無忌、吳煌、吳東權、吳振源、李欣哲、…、羅新衛,「2014年能源產業技術白皮書」,經濟部能源局,第一版,2014。
[2] N. G. Elvin, A. A. Elvin, and M. Spector, “A self-powered mechanical strain energy sensor,” Smart Materials and Structures, Vol.10, pp. 293-299, 2001.
[3] A. Erturk, and D. J. Inman, “On mechanical modeling of cantilevered piezoelectric vibration energy harvesters,” Journal of Intelligent Material Systems and Structures, Vol. 19, pp. 1311-1325, 2008.
[4] L. Mateu and F. Moll, “Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts,” Journal of Intelligent Material Systems and Structures, Vol. 16, pp. 835-845, 2005.
[5] N. S. Shenck and J. A. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics,” IEEE Micro, Vol. 21, pp.30-42, 2001.

延伸閱讀