透過您的圖書館登入
IP:3.133.109.211
  • 學位論文

表面擴散式及噴射式介電質放電電漿處理聚二氧乙基噻吩-聚苯乙烯磺酸

Surface-diffusion and jet-type dielectric barrier discharge plasma treatments on PEDOT:PSS

指導教授 : 陳建彰

摘要


本研究中使用表面擴散式介電質放電電漿(SDDBD)以及氬氣介電質放電噴射電漿(Argon DBD jet)對導電高分子聚合物PEDOT:PSS進行表面處理,並進行材料分析,SDDBD所處理之PEDOT:PSS並用於反結構(Inverted structure)鈣鈦礦太陽能電池的電洞傳輸層。 實驗一的部分是透過表面擴散式介電質放電電漿(SDDBD)進行PEDOT:PSS的處理。電漿在介電質及鐵網之間產生後,擴散至PEDOT:PSS表面,和PEDOT:PSS反應。處理後之PEDOT:PSS並應用於反結構鈣鈦礦太陽能電池的電洞傳輸層(Hole transport layer)。由於其SDDBD可攜式的特性,SDDBD電漿系統是置入充滿氮氣的手套箱內操作。隨著SDDBD處理時間的增加,PEDOT:PSS的電阻率隨時間先降低然後增加。X射線光電子能譜(XPS)之S2p結合能峰面積比的變化顯示SDDBD處理可以移除表面過量的PSS並改變PEDOT與PSS的比例,從而改變PEDOT:PSS的電阻率,而其功函數也可能隨之改變。當此電漿處理的PEDOT:PSS作為反結構鈣鈦礦太陽能電池(Perovskite solar cell, PSC)之電洞傳輸層,可能影響到介面電荷傳輸和電荷蒐集,從而使PSC性能轉換效率得到改善以及減低遲滯效應。使用30秒SDDBD處理可以實現PSC的最佳效率。 實驗二的部分是透過氬氣介電質放電噴射電漿在大氣壓的環境下對PEDOT:PSS薄膜做表面改質,並於經由噴射電漿處理後的PEDOT:PSS做薄膜的材料分析,因電漿噴流的口徑較小,只約1 mm左右,故往復掃描的次數方式作為改變參數,分別以水接觸角、SEM俯瞰圖、薄膜導電率量測其表面性質的改變,從結果中得到電漿與表面薄膜反應性比實驗一所述的SDDBD還要高,其在掃瞄5次、7次、9次後表面有很大的變化,進一步以XPS之S2p能譜分析得到此電漿密度較高的Ar DBD jet系統能夠與表面快速反應且移除材料,由SEM剖面圖觀察到厚度隨著電漿處理次數變化,可能可做為材料的微蝕刻或應用在需要高反應性的材料改質上。因此電漿和PEDOT:PSS的反應劇烈,處理過後之PEDOT:PSS做成之鈣鈦礦太陽能電池的效能極差或沒有太陽能電池特徵曲線,因此本部分沒有做鈣鈦礦太陽能電池的探討。

並列摘要


This study investigates the PEDOT:PSS films treated by surface-diffusion dielectric barrier discharge (SDDBD) and Ar DBDjet. SDDBD-treted PEDOT:PSS is then used as the hole transport layer (HTL) of perovskite solar cells (PSCs). In the first part of the experiment, SDDBD-treated PEDOT:PSS is characterized. The plasma is generated between the dielectric layer and the stainless steel mesh and and diffuses to the materials being treated. The whole SDDBD device is used inside a nitrogen-filled glove box. As the SDDBD treatment time increases, the resistivity decreases and the increases. XPS analyses indicate the removal of the excess PSS on the surface, revealing the PEDOT phase. This change the ratio of PEDOT/PSS, which thereby varies the resistivity and the work function. This could influence the charge transport across the interface and the charge collection, which thereby improve the performance of PSCs and reduce the hysteresis. 30-s SDDBD treatment leads to the best efficiency of PSCs. Second part of the experiment applies Ar dielectric barrier discharge jet (DBDjet) to treat PEDOT:PSS. Because the jet size is ~1 mm, number of scanning times is the parameter. The reaction of Ar DBDjet plasma and PEDOT:PSS is vigorous. XPS S2p results indicate Ar DBDjet effectively removal the whole PEDOT:PSS. DBDjet-treated PEDOT:PSS is not functioning to act as the HTL of PSCs. Therefore, in this part of experiment, no PSC results are presented.

參考文獻


[1] W. Hicks, "Claims for solar cell efficiency put to test at NREL," ed: Phys. org, 2016.
[2] D. M. Chapin, C. Fuller, and G. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, 1954.
[3] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[4] W. S. Yang et al., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells," Science, vol. 356, no. 6345, pp. 1376-1379, 2017.
[5] L. Meng, J. You, T.-F. Guo, and Y. Yang, "Recent advances in the inverted planar structure of perovskite solar cells," Accounts of chemical research, vol. 49, no. 1, pp. 155-165, 2015.

延伸閱讀