透過您的圖書館登入
IP:3.146.105.137
  • 學位論文

具有位移及角度量測功能之全像式原子力顯微鏡之設計與開發

Design and Development of HOE-based Atomic Force Microscope with Translational and Angular measurements

指導教授 : 黃光裕
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


原子力顯微鏡廣泛應用在工程及科學領域,尤其在奈米量測的重要性與日俱增。本論文發展具有位移與角度量測功能的全像式原子力顯微鏡,並開發可在空氣及水溶液中掃描的機制。相較以光槓桿原理為光學頭的原子力顯微鏡體積較大,且需要花費較多時間做光路的調整。全像式光學元件具有體積小而緊緻與高靈敏度的優點,以全像式讀取頭作為原子力顯微鏡光學頭,除了方便控制外更可縮短光路調整時間;經由透鏡的組合可達到所需的掃描範圍,以提升原子力顯微鏡的設計彈性與性能。 透過理論推導與軟體分析,本論文選用適合原子力顯微鏡架構的準直鏡與物鏡,並以理論及實驗方式說明全像式讀取頭具有量測位移及角度變化的能力;透過熱雜訊頻譜的分析,驗證全像式讀取頭的高靈敏度;也利用熱雜訊頻譜及聚焦誤差訊號的關係,推導出非接觸式量測微懸臂彈性係數的方法。 經實驗證明,本論文所架構之全像式原子力顯微鏡在空氣中及水溶液中掃描石墨樣品皆達到單層石墨台階解析度,利用循軌誤差訊號做角度的回饋亦可達到奈米等級解析度,掃瞄結果說明全像式原子力顯微鏡的高解析度及穩定性。此外,利用讀取頭的光學特性,全像式系統也適用於非接觸式光學輪廓儀的應用,藉由不同樣品的掃描也驗證該模式的可行性。

並列摘要


Recent years have seen increased attention being given to atomic force microscopy (AFM) in nano-scale measurement. In this dissertation, a holographic optical element (HOE) based AFM is designed and developed for operation in air and water. Unlike the bulk size and cumbersome procedures of laser beam deflection method, holographic pickup head has the advantages of easy control and simpler optical adjustment. The features of compact configuration, small size, and high sensitivity let HOE enhance the performance of AFM. Through theoretical analysis and software simulation, the translational S-curve between the light spot on photodiode and reflective plane displacement is deduced. According to the simulation results, the relevance of light spot shape, translational displacement, bending angle, and torsional angle are revealed. The detection functions of translational and angular displacements of the cantilever are demonstrated. The experiment of thermal noise spectrum verifies the stable performance and high sensitivity of holographic pickup head. The spring constant calibration of a micro cantilever is also derivative by thermal fluctuation method. AFM images of graphite display the single layer step (0.34 nm) in both air and water. The nanometer scale resolution by track error signal is also divided, thus verifying the resolution and stability of HOE-based AFM system. The images of non-contact optical profiler mode for microcircuit and tuberose epidermis tissue exemplify the feasibility and applicability of HOE-based profiler system in micron scale.

參考文獻


[2] Young, R., Ward, J., and Scire, F., “The Topografiner An Instrument for Measuring Surface Microtopography”, Review of Scientific Instruments, vol. 43, no. 7, pp. 999-1012, 1972
[3] Binnig, G., Rohrer, H., Gerber, C., and Weibel, E., “Surface Studies by Scanning Tunneling Microscopy”, Physics Review Letter, vol. 49, pp. 57-61, 1982
[5] Meyer, G. and Amer, N.M., “Novel optical approach to atomic force microscopy”, Applied Physics Letters, vol. 53, no. 12, pp. 1045-1047, 1988
[6] Martin, Y., Williams, C.C., and Wickramasinghe, H.K., “Atomic force microscope–force mapping and profiling on a sub 100-Å scale”, Journal of Applied Physics, vol. 61, no. 10, p. 4723, 1987
[7] Zhong, Q., Inniss, D., Kjollor, K., and Elings, V.B., “Fractured polymer/ silica fiber surface studied by tapping mode atomic force microscopy”, Surface Science Letter, vol. 290, pp. 688-692, 1993

延伸閱讀