透過您的圖書館登入
IP:3.133.12.172
  • 學位論文

於氮化鎵與氮化鋁鎵基板上形成的銀/氧化銀奈米網絡透明導電體

Ag/AgO Nano-network Transparent Conductors Formed on GaN and AlGaN Templates

指導教授 : 楊志忠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本論文研究中,我們改變不同的製作條件,包括 (1) 銀沉積厚度 、(2) 熱退火溫度、 (3) 不同波長 LED照光、 (4)照光時間,在氮化鎵基板上製作銀/氧化銀奈米網絡,並分析其結果,包括穿透率、片電阻及網絡尺寸。我們特別比較分別採用多階段窄頻照光及單一階段寬頻照光所製作的樣品,發現由單一階段寬頻照光所製作的樣品有較緊密的網絡結構及較小的片電阻值,但穿透率卻較低;沉積較薄的銀或較低的熱退火溫度也使得樣品有較緊密的網絡結構、較低的片電阻值及較低的穿透率。同時,我們也在不同鋁濃度的氮化鋁鎵基板上製作奈米網絡結構。我們在鋁濃度低於45%的氮化鋁鎵樣品上製作出片電阻小於 100 歐姆的網絡結構。然而,因氮化鋁鎵的樣品是成長在氮化鎵的基板上,所以波長低於370奈米的穿透頻譜無法量測。

並列摘要


In this study, Ag/AgO nano-network (NNW) structures on GaN template under various fabrication conditions, including the controls of Ag deposition thickness, thermal annealing temperature, and illumination light-emitting diode spectrum and duration are fabricated and characterized. The transmissions, sheet resistance levels, and mesh sizes of those NNW structures are compared. In particular, we compare the results between the samples with multiple-stage and single-stage illumination processes. With single-stage illumination, the mesh size is smaller, the sheet resistance is lower, but the transmission becomes lower. Also, a thinner Ag deposition or a lower thermal annealing temperature results in a smaller mesh size, a lower sheet resistance level, but a lower transmission. Meanwhile, we fabricate NNWs on AlGaN templates of different Al contents. We can successfully fabricate NNWs with sheet resistance levels lower than 100 ohm/sq when Al content is lower than 45 %. However, because the AlGaN layers are grown on GaN templates, the transmission measurement in the spectral range shorter than 370 nm in wavelength is difficult.

並列關鍵字

AgO Transparent conductors GaN AlGaN Nano-network

參考文獻


Kim, J.; Naik, G. V.; Emani, N. K.; Guler, U.; Boltasseva, A. Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films. IEEE J. Select. Top. Quantum Electron. 2013, 19, 4601907.
Yao, Y. F.; Yang, S.; Lin, H. H.; Chou, K. P.; Weng, C. M.; Liao, J. Y.; Lin, C. H.; Chen, H. T.; Su, C. Y.; Tu, C. G.; Kiang, Y. W.; Yang, C. C. Anti-Reflection Behavior of a Surface Ga-Doped ZnO Nanoneedle Structure and the Controlling Factors. Opt. Mater. Express 2017, 7, 4058-4072.
Chen, D.; Liang, J.; Liu, C.; Saldanha, G.; Zhao, F.; Tong, K.; Liu, J.; Pei, Q. Thermally Stable Silver Nanowire-Polyimide Transparent Electrode Based on Atomic Layer Deposition of Zinc Oxide on Silver Nanowires. Adv. Funct. Mater. 2015, 25, 7512-7520.
Hu, L.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4, 2955-2963.
Langley, D.; Giusti, G.; Mayousse, C.; Celle, C.; Bellet, D.; Simonato, J. P. Flexible Transparent Conductive Materials Based on Silver Nanowire Networks: a Review. Nanotechnology 2013, 24, 452001.

延伸閱讀