透過您的圖書館登入
IP:3.139.97.157
  • 學位論文

應用於接收機之自動增益控制放大器與類比數位轉換器設計

Design of Automatic Gain Control Amplifiers and Analog to Digital Data Converters for Receiver Applications

指導教授 : 劉深淵
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文敘述以互補式金屬氧化物半導體電晶體製程設計應用於接收端的自動增益控制放大器以及其後續的類比轉數位訊號轉換器。隨著先進半導體製程的不斷研究進步以及數位訊號處理技術的蓬勃發展,數位電路的功能與效能日益強大,但由於真實世界的訊號都是類比的形式存在並傳遞,在傳遞的過程中,受到各種不同環境的影響與干擾,信號強度與雜訊變化不定,這樣的訊號對數位電路是無法使用的。所以在信號接收端提供穩定的信號大小並將類比訊號轉成數位訊號的電路在各種積體電路上是不可或缺的。 首先,本論文介紹自動增益放大器的基本原理以及我們實驗測試的兩個自動增益放大器。利用我們提出的方法,可以讓自動增益放大器達到固定的收斂常數,傳輸的速率分別可以達到5Gb/sec與1.25Gb/sec。接著介紹如何將類比信號作取樣以及使用快閃式的架構快速將類比信號轉換為數位信號。在類比信號的取樣上,由於半導體製程上的許多寄生效應會使電路效能降低,我們提出利用差動互補的方式來抵消這些不良的效應,經過實驗,我們的兩個取樣電路分別可以在10GSamples/sec以及13.5GSamples/sec下達到5位元與4位元解析度。在快閃式類比數位轉換器上,我們實際設計驗證利用架構改良與新電路的設計,實現5位元解析度5GSamples/sec以及4位元解析度10GSamples/sec的類比數位轉換器。 而在先進的深次微米製程之下,電晶體速度加快工作電壓下降。低工作電壓使得類比電路的設計日益困難,所以我們利用先進製程的高速特性,提出時間域的設計方式,將類比電壓轉換成時間長短來作訊號的處理。我們實際實驗完成了8位元20MSamples/sec與解析度可調的積分型類比數位轉換器。最後我們也設計完成時間域的快閃式類比數位轉換器,模擬結果顯示在500MSamples/sec的轉換速率下可達到6位元的解析度。 最後,在未來的發展上,我們不只能在時間域進行類比數位的轉換;相類似的,在頻率域進行類比數位轉換也是具有發展潛力的。

並列摘要


This thesis describes the design of automatic-gain-control amplifiers and the following analog-to-digital data converters using CMOS process technologies. With the progress of semiconductor process and the development of digital signal process technique, the function and the performance of digital circuits become more and more strong. However, real-world signals are analog. When signals are transmitted, signal strengths are different due to different environments and interferences so that they could not be used in digital circuits. Therefore, providing stable signal strength and converting analog signal as digital output data in receivers is indispensable in all kinds of integrated circuits. First, this thesis introduces basic fundamentals of automatic-gain-control amplifier and two of our experimented automatic-gain-control amplifiers. By our proposed methods, variable-gain amplifiers which have the characteristic of exponential gain amplifiers so that automatic-gain-control amplifiers have constant settling time and their data rates achieve 5Gb/sec and 1.25Gb/sec, respectively. Second, track-and-hold circuits for high-speed analog-to-digital data converter are presented. When sampling an analog signal, many parasitic effects degrade the performance of the circuit. To deal with these problems, two track-and-hold circuits are proposed by using the differential cancellation method to cancel these effects. According to experimental results, the track-and-hold circuits achieve 5-bit 10GSamples/sec and 4-bit 13.5GSamples/sec. respectively. In the flash analog-to-digital data converters, modified architecture and some techniques are adopted to improve performances of bandwidth and circuit. In advance nanoscale CMOS process, transistor has two features of high operation speed and low supply voltage. The low supply voltage makes analog circuits design becomes more and more difficult. The time-domain design methodology which transfers the analog voltage into time-domain signal for data conversion is proposed. An 8-bit 20MSamples/sec integrating analog-to-digital data converter with resolution variable is experimented and discussed. Finally, a time-domain flash analog-to-digital data converter is also designed and implemented in 65-nm CMOS process. According to simulation results, it achieves resolution of 6-bit at 500MSamples/sec.

參考文獻


[39] J. H. Koo, Y. J. Kim, B. H. Park, S. S. Choi, S. I. Lim, and S. Kim, “A 4-bit 1.35Gsps ADC for DS-CDMA UWB System,” in Proc. IEEE Asian Solid-State Circuits Conference, November 2006, pp. 339-342.
[10] C. -K. Wang ,and P. -C. Huang, “An Automatic Gain Control Architecture for SONET OC-3 VLSI,” IEEE Transactions on Circuits and Systems-II, vol. 44, no. 9, pp.779-783, September 1997.
[14] P. -C. Huang, L. -Y. Chiou ,and C. -K. Wang, “A 3.3V CMOS Wideband Exponential Control Variable Gain Amplifier,” in Proc. IEEE International Symposium on Circuit and Systems, vol.1, June 1998, pp.285-288.
[19] O. Jeon, R. M. Fox, and B. A. Myers, “Analog AGC Circuitry for a CMOS WLAN Receiver”, IEEE Journal of Solid-State Circuits, vol.41, no.10, pp.2291-2300, October 2000.
[24] J. Lee, A. Leven, J. S, Weiner, Y. Baeyens, Y. Yang, W. J. Sung, J. Frackoviak, R. F. Kopf, and Y. K. Chen “A 6-b 12-GSamples/s Track-and-Hold Amplifier in InP DHBT Technology,” IEEE Journal of Solid-State Circuits, vol.38, No.9, pp. 1533-1538, September 2003.

延伸閱讀