透過您的圖書館登入
IP:3.144.42.196
  • 學位論文

以現地檢核與修改系統進行機電管線之衝突排解

An On-site Pipeline Inspection and Modification System for MEP Conflict Resolution

指導教授 : 康仕仲
共同指導教授 : 紀宏霖(Hung-Lin Chi)

摘要


機電管線的衝突解決需要同時考慮多種類的管線系統,雖然建築資訊模型技術(BIM)能夠在設計階段消除施工前的衝突,但由於現有的方法會遇到許多無效的自動碰撞檢測結果、竣工與模型的偏差、施工性和維護性等問題,現場管線的檢查和修改仍然是實務上必要的流程。因此,本研究旨在利用擴增現實技術和路徑規劃演算法開發一套現地之管線檢核與修改系統。該系統讓使用者比較現有的管道模型和實際建立的管道,並重新規劃衝突管道的路徑以獲得無衝突的解決方案。這套系統包括了規劃模組和互動模組。為了考慮現有的機電管線的設計標準,我們在規劃模組中定義了五個限制,分別是斜率、彎頭、高程、上下關係和距離限制。這五項限制被嵌入到A *規劃演算法中,以高搜索速度來尋找解決方案路徑。互動模組則是基於擴增現實視覺化技術所開發,用於將現場使用者的虛擬模型資訊與真實世界的物件相關聯。我們以現有之遊戲引擎的環境在行動裝置上實作了該系統。並且在不同大小的搜索網格和管線優先順序下進行了性能測試以評估計算時間和計劃結果。結果表明,在房間和走廊空間情境下,以網格大小為0.15和0.2公尺的組別進行路徑規劃時,規劃的時間與規劃結果的精確度能夠達到良好的平衡,系統可以在約10秒的時間下,規劃出一組符合機電管線的設計要求的路徑解決方案。我們預期該系統將能夠在工程實務上提供一種有效和高效的衝突解決方法,以改善機電管線的施工和營運維護過程。

並列摘要


MEP conflict resolution is a complicated process since the multidisciplinary coordination of the MEP engineering. The issues of ineffective collision detection, as-built deviations, and constructability and maintainability always happen in the construction stage unexpectedly. An on-site pipeline inspection and modification system is required. Therefore, this research aims at developing an on-site pipeline inspection and modification system using the Augmented Reality (AR) and path-planning algorithm. The system allows the user to compare the existing pipe model with the as-built pipeline and re-plan the paths of conflicted pipes to obtain a solution without conflicts. The system includes planning module and interaction module. The planning module defines five constraints, which are slope, turning, elevation relation and proximity constraints to consider current MEP design criteria. The constraints are embedded into the A* planning algorithm to search the solution paths with a high searching speed. The interaction module is developed base on the AR visualization technology to link the information from virtual model to the real world for the on-site user. We implemented the system on a mobile device using game engine and conducted performance tests in different diameters of searching girds and priorities of pipes to evaluate the calculating time and planning result. The result shows that in both room and aisle space scenario, the system can obtain a set of path solution with approximately 10 seconds for all the pipes complying with the pre-defined MEP design requirements in the groups of 0.15 and 0.2 meters grid sizes. The system is expected to provide an effective and efficient conflict resolving method to improve the MEP construction process and the future maintenance.

參考文獻


Korman, T. M., Fischer, M. A. and Tatum, C. B. (2000) Knowledge and Reasoning for MEP Coordination, J. Constr. Eng. Manage., 2003, 129(6): 627-634
Hu, Z. Z., Zhang, J. P., Yu, F. Q., Tian, P. L. and Xiang, X. S. (2016) Advances in Engineering Software 100: 215-230
Wang, J., Wang, X., Shou, W., Chong, H. Y. and Guo, J. (2016) Building information modeling-based integration of MEP layout designs and constructability, Automation in Construction 61, 134–146.
Deliang, L, & Huibiao, L. (2009). Interfere-check applying to 3D automatic pipe route arrangement. Proceedings of International Conference on Computational Intelligence and Software Engineering, Wuhan, 11–13.
Park, C. S., Lee, D. Y., Kwon, O. S. and Wang, X. (2013) A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template, Automation in Construction 33, 61–71.

延伸閱讀