透過您的圖書館登入
IP:18.116.42.208
  • 學位論文

複合式冷卻與潤滑用於Ti-6Al-4V車削之研究

Study on Machinability in turning of Ti-6Al-4V with hybrid cooling and lubrication

指導教授 : 廖運炫

摘要


本文主要在於探討使用微量噴霧(MQL)以及不同的冷卻與潤滑方式對 於車削Ti-6Al-4V 的切削性影響。文中先從刀具磨耗、切削力和表面粗度 結果的分析,歸納出最適合的噴霧參數設定。再比較切削時以微量噴霧配 合熱管置於刀片底端的方式、以及單獨使用微量噴霧、熱管和一般濕切 削,觀察刀具磨耗、切削力、刀具溫度、表面粗度及切屑,以獲得切削 Ti-6Al-4V 最適當的冷卻與潤滑方式。 實驗結果發現微量噴霧最適當的組成為以水基(20%)切削液配合 20ml/hr 的流量最可以有效降低刀具磨耗。不同潤滑與冷卻方式皆以微量噴 霧配合熱管最能有效降低刀具磨耗。切削速度可以從一般建議的 50-70m/min 提升至90m/min,因此預期可以改善切削Ti-6Al-4V 鈦合金的 效率。

關鍵字

Ti-6Al-4V 切削性 微量噴霧 熱管

並列摘要


Titanium alloy is well known as one of the typical difficult-to-cut materials. This thesis focuses on the effect of various cooling and lubricating methods on machinability in turning Ti-6Al-4V titanium alloy. The appropriate cutting fluid and its associated flow rate of the minimum quantity lubrication (MQL) applied in the cutting process are determined first. Thereafter, four types of cooling and lubrication methods during cutting are compared. They are machining with the MQL technique, machining with flooded cutting fluid, machining with a heat pipe embedded beneath the insert for heat removal, and machining with the MQL technique together with the assistance of a heat pipe. The most appropriate cooling and lubrication method is determined based on the analysis of the resulting tool wear, cutting force, tool temperature, surface finish and the chip morphology in cutting. It is found that 20% water-based cutting fluid and a flow rate of 20ml/hr are the proper combination of MQL. The use of MQL incorporates with a heat pipe assisting heat removal results in minimum tool wear. The cutting speed in turning Ti-6Al-4V titanium alloy can be increased from the normally recommended 50-70 m/min to 90m/min. Hence improvement of machining efficiency is expected.

並列關鍵字

Ti-6Al-4V machinability MQL heat pipe

參考文獻


[3] P. D. Hartung, B. M. Kramer, “Tool Wear in Titanium Machining,” Annals of the CIRP, Vol. 31/1, 1982, pp. 75-80.
[5] E. O. Ezugwu, Z. M. Wang, “Titanium Alloys and Their Machinability – a Review,” Journal of Materials Processing Technology, Vol. 68, No. 3, 1997, p 262-274.
[7] Z. Zhao, S. Y. Hong, “Cooling Strategies for Cryogenic Machining from a Materials Viewpoint,” Journal of Materials Engineering and Performance, Vol. 1, No. 5, 1992, pp. 669-678.
[8] S. Y. Hong, Y. Ding, “Cooling Approaches and Cutting Temperatures in Cryogenic Machining of Ti-6Al-4V,” International Journal of Machine Tools & Manufacture, Vol. 41, 2001, pp. 1417-1437.
[9] S. Y. Hong, Y. Ding, W. C. Jeong, “Friction and Cutting Forces in Cryogenic Machining of Ti-6Al-4V,” International Journal of Machine Tools & Manufacture, Vol. 41, 2001, pp. 2271-2285.

被引用紀錄


高萱嘉(2012)。熱管冷卻系統用於車削Ti-6Al-4V之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2012.00623
張長宏(2007)。奈米切削液對磨削鈦合金的影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.03111

延伸閱讀