透過您的圖書館登入
IP:18.216.227.76
  • 學位論文

銻磷砷化銦/銻砷化銦多重量子井發光二極體的研究

Study on InAsPSb/InAsSb multiple quantum well light emitting diode

指導教授 : 林浩雄

摘要


本論文之研究以銻磷砷化銦/銻砷化銦多重量子井製作中紅外線發光二極體及其光電特性測定。我們利用氣態源分子束磊晶法成長第一型銻磷砷化銦/銻砷化銦多重量子井結構於n-type砷化銦基板上,並以濕蝕刻法進行平台隔離的製程。蝕刻溶液中,鹽酸+雙氧水(30%)+水以1:1:8的比例混合對n-type與p-type的銻磷砷化銦材料具有選擇性蝕刻特性,其蝕刻速率相差11倍,而磷酸+雙氧水(30%)+水的蝕刻液僅有2倍之差。在製作接面金屬而進行熱退火步驟時,若退火溫度超過400oC時會造成元件損壞,I-V曲線變差。從發光二極體的變溫電激發螢光頻譜實驗當中觀察發現,在50K以上時發光二極體的發光強度會急遽衰減,至300K時約衰減500倍。從L-I的分析可以看出此發光二極體在低溫時的復合以自發性放光復合為主,至高溫時逐漸轉為歐傑復合為主,而導致發光二極體的發光強度極易受到溫度的影響。本實驗成功以氣態源分子束磊晶成長在室溫時的放光波長約為3.7μm,以脈衝模式在責任週期為20%,電流密度為10A/cm2時,發光功率可以達10μW的發光二極體元件。

並列摘要


In this study, InAsPSb/InAsSb multiple quantum well light emitting diodes grown by gas source molecular beam epitaxy were fabricated and their EL properties were investigated. Before processing device sample, InAsPSb etching solution and etching rate were tested. We found that the etching rate was different on n-type and p-type InAsPSb. Using HCl:H2O2(30%):H2O(1:1:8) as etching solution, the rate on n-type InAsPSb is 11 times faster than the rate on p-type InAsPSb while only 2 times difference using H3PO4:H2O2(30%):H2O(1:1:8) on n-type and p-type InAsPSb. The annealing temperature should be below 400oC or diode would be broken. From temperature dependent EL measurement we found the intensity of LEDs drastically decayed above 50K, and 500 times weaker at 300K. The LI analysis shows that spontaneous emission dominates at low temperature while at high temperature Auger recombination dominates and represents the high temperature sensitivity of emission intensity. We have successfully fabricated LEDs whose emitting power is 10μW in pulse mode with 20% duty cycle at room temperature when injection current density is 10A/cm2.

並列關鍵字

MIR InAsPSb MQW LED light emitting diode mid-infrared

參考文獻


[1]X. Y. Gong, H. Kan, T. Makino, K. Watanabe, T. Lida, H. Suzuki, M. Aoyama, and T. Yamagughi, “Light emitting diodes fabricated from liquid phase epitaxial InAs/ InAsxP1-x-ySby/ InAsxP1-x-ySby and InAs/ InAsxP1-x-ySby Multi-layers,” Cryst. Res. Technol., vol. 35, pp. 549-555, 2000.
[2]G. Tsai, D. L. Wang, C. E. Wu, C. J. Wu, Y. T. Lin, and H. H. Lin, “InAsPSb quaternary alloy grown by gas source molecular beam epitaxy,” J. Cryst. Growth, vol. 301- 302, pp. 134-138, 2006.
[3]R. A. Stradling, “Semiconductor light sources for mid-infrared applications : concluding remarks,” Phil. Trans. R. Soc. Lond. A, vol. 359, pp. 645-658, 2001.
[4]M. J. Pullin, H. R. Hardaway, J. D. Heber, C. C. Phillips, W. T. Yuen, and R. A. Stradling, “Room-temperature InAsSb strained-layer superlattice light-emitting diodes at λ=4.2μm with AlSb barriers for improved carrier confinement,” Appl. Phys. Lett., vol. 74, pp. 2384-2386, 1999.
[5]E. R. Gertner, D. T. Cheung, A. M. Andrews and J. T. Longo, “Liquid phase epitaxtial growth of InAsxSbyP1-x-y layers on InAs,” J. Electron. Mater., vol. 6, pp. 163, 1977.

延伸閱讀