透過您的圖書館登入
IP:18.216.124.8
  • 學位論文

銅催化氧化矽奈米線的製備

Synthesis of Silicon Oxide Nanowires with Copper as Catalyst

指導教授 : 吳乃立

摘要


為了得到更精簡更經濟的製程生產氧化矽奈米線,本研究在審慎的考量下採用銅金屬做為其奈米線成長觸媒,並在1000oC,1%H2/N2的氣氛下,成本s備出高排列規則性的氧化矽奈米線陣列,其平均直徑約40nm,長度約數微米。在實驗參數的研究上,對於反應溫度,時間,氣氛、基材與銅觸媒量都有研究,並提出成長機制模型。且在奈米線成長機制上,對於氣液固成長機制與氧化物輔助機制做了詳細的討論,再加上本研究的實驗結果歸納出兩者間的差異,其中最重要的是強調在有合適觸媒的情況下,反應傾向於由氣液固成長機制而非氧化物輔助機制。且在氧化矽奈米線陣列的光致發光研究上,發現其在波長250nm的激發光下,會在2.8eV (440 nm)至4.0 eV (310 nm)之間產生放射光。

關鍵字

奈米線 氧化矽

並列摘要


In order to obtain a simpler and cheaper process to produce silicon oxide nanowires, copper metal was adapt as catalyst for nanowire growing under deliberate consideration, and highly orientated silicon oxide nanowires array with 40nm diameter in average and several micrometer in length was produced at 1000oC under 1% H2/N2 atmosphere. For experimental parameters research, we studied reaction temperature, reaction time, atmosphere, base material and mount of copper catalyst, and modeled the growth mechanism. In addition, we had a detail discussion on gas-liquid-solid mechanism and oxide-assisted mechanism in nanowires growth mechanism, and within our experimental result we finally concluded the differences between this two mechanisms. In these differences, the most important one is that within proper catalyst, the reaction preferred gas-liquid-solid mechanism to oxide-assisted mechanism. Moreover, in the photoluminescence study of silicon oxide nanowires array, we found that it would emit strong light between 2.8 eV (440 nm) to 4.0 eV (310 nm) under the excitation of 250nm wavelength light.

並列關鍵字

nanowires, copper silicon oxide

參考文獻


[1] A. Sengupta, K. C. Mandal, and J. Z. Zhang, “Ultrafast electronic relaxation dynamics in layered iodide semiconductors: a comparative study of colloidal BiI3 and PbI2 nanoparticles”, J. Phys. Chem. B, 104, 9396-9403 (2000).
[2] M. Brachez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels”, Science, 281, 2013-2016 (1998).
[3] X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors”, Chem. Phys. Lett., 369, 220-224 (2003).
[4] S.-W. Chung, J.-Y. Yu, and J. R. Heath, “Silicon nanowire devices”, Appl. Phys. Lett., 76, 2068-2070 (2000).
[5] J.-Y. Yu, S.-W. Chung, J. R. Heath, “Silicon nanowires: preparation, device fabrication, and transport properties”, J. Phys. Chem. B, 104, 11864-11870 (2000).

延伸閱讀