透過您的圖書館登入
IP:3.19.31.73
  • 學位論文

銅基材料於固態燃料電池之應用與熱熔擠組件開發

Application of Cu-Based Material on Solid Oxide Fuel Cell (SOFC) and Development of Melt-Extrusion (ME) Module

指導教授 : 韋文誠

摘要


本研究使用銅基材料製作固態燃料電池之陽極,進行以下的研究開發工作。測試銅與銅鋅合金之基本性質,如導電性、熱膨脹係數、硬度等特性,並對此金屬之抗氧化性做深入探討,測試並比較銅與鎳金屬、鈦六鋁四釩合金在不同測試條件下之氧化行為,最後用表面氧化層之微結構與熱重分析的氧化結果相互驗證。本研究亦製備摻釤及鈷之氧化鈰(Co-SDC)電解質,並提出合成與燒結SDC粉末的方法,利用銅的高導電性和防止積碳的特性,與SDC良好的催化性和離子導電性,使此電池能在750 oC達到112 mW cm-2的最高電功率輸出。此外有鑒於銅鋅合金相較於純銅有較低的熔點和成形性,非常適合做為3D列印的金屬胚料,因此本研究亦設計與開發一熱熔擠(ME)裝置來擠製銅鋅合金,此裝置能達到1100 oC,且有優異的隔熱特性,當擠出嘴為1000 oC時,此裝置外部僅為51 oC。

並列摘要


This study used Cu-based materials as an anode of solid oxide fuel cells (SOFCs) and conducted the following R&D works. Properties of Cu and Cu-Zn alloy were investigated, including electrical conductivity, coefficient of thermal expansion (CTE), hardness and oxidation behavior. The oxidation-resistance of Cu, Ni and Ti-6Al-4V was investigated and compared. Moreover, the microstructure of the oxide layers was observed to verify the results of TGA test. This study also developed cobalt-doped SDC cermet as an electrolyte for intermediate temperature (IT)-SOFC. The Cu-based electrode provided good electronic conductivity and prevented carbon deposition. The SDC was used as catalyst and ionic conductor. The methods to synthesize SDC and sinter a dense SDC electrolyte were also provided in this study. Maximum power density of the Cu-based SOFC was 112 mW cm-2 at 750 oC. On the other hand, due to a low melting point and good formability of Cu-Zn alloy, it was suitably applied on 3D printing (3DP) technique. As a result, a melt-extrusion (ME) module was designed to print Cu-Zn alloy. The ME module could reach 1100 oC to extrude Cu-Zn alloy. Besides, the heat insulation of the module was excellent, which was 51 oC outside the module while the temperature in the nozzle was 1000 oC.

並列關鍵字

Cu brass oxidation kinetics anode IT-SOFC melt-extrusion (ME)

參考文獻


[24] 李欣怡,黃銅退火雙晶與高碳麻田散鐵相變雙晶之奈米顯微組織研究,國立台灣大學博士論文,(2010)
[25] 張以澄,黃銅退火雙晶與機械雙晶之顯微組織研究,國立台灣大學碩士論文,(2012)
[23] 蕭勝元,金屬之加工軟化與退火硬化,大同大學碩士論文,(2007)
[2] S. P. Jiang, S. H. Chan, “A review of anode materials development in solid oxide fuel cells,” J. Mat. Sci., 39 (2004) 4405-4439.
[3] J. H. Koh, Y. S. Yoo, J. W. Park, H. C. Lim, “Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel,” Solid State Ionics, 149 (2002) 157-166.

延伸閱讀