透過您的圖書館登入
IP:52.14.183.150
  • 學位論文

移轉速度的存在性及其對紊流流化床 流態行為之研究

The Study of the Existence of Transition Velocity and the Hydrodynamics of Turbulent Fluidized Beds

指導教授 : 呂理平

摘要


摘要 關於氣-固流體化床由氣泡床到快速床間之流態轉變,以及紊流床是否存在之問題,至今尚無定論。根據Rhodes (1996)對文獻上各研究者所得之結果分析比較,發現目前有關流態之轉變及移轉速度之探討,仍莫衷一是。因此吾人提出利用結合反射型光纖探針、熱傳探針、壓力探針來探討氣固流體化床在流態改變時床中空隙度、床-壁間傳熱係數、壓力擾動振幅三者的變化及其相關性,以了解床中之變化及其對流態之影響,並試圖證明移轉速度之存在。 本實驗裝置為內徑0.108m、高5.7m,頂端接有高1.5m擴大管的流體化床及其他形式之床體,使用數種不同粒徑Group A及Group B粒子為研究對象,分別以反射型光纖探針量測床中粒子局部空隙度及其軸向變化;以熱傳探針量測床-壁間傳熱係數及其軸向變化;以壓力探針量測床中擾動振幅大小及其軸向變化,藉由不同型式探針量測之結果,及不同統計方式之分析比較,以作為判斷移轉速度存在之指標,並了解紊流流體化床之動力行為。

並列摘要


Abstract The transition from bubbling bed to fast fluidization bed will be investigated by using (1) optical fiber to measure the local bed voidage distribution, (2) pressure probe to measure the pressure fluctuations and (3) heat transfer probe to measure the bed-to-wall heat transfer coefficient. This transition region from bubbling bed to fast fluidized bed is now widely referred to the turbulent fluidized bed, the structure of this bed and the mechanism for the transition are still unclear. Experimental study will be carried out in a 0.108 m i.d., 5.76m high with expanded-top fluidized bed, and other type of bed. Several different sizes of Group A and B particles will be used as the fluidized particles. The local bed voidage will be measured by reflection type optical fiber probe. With the addition of mean amplitude of pressure fluctuations and bed-to-wall heat transfer coefficient measurements, hopefully the transition mechanism and the bed structure could be understood in more detailed way, and the existence of “turbulent fluidized bed” could be explained in a logical sense. Above all, by wavelet analysis, the existence of transition velocity could be identified and the hydrodynamics of turbulent fluidized bed could be characterized.

參考文獻


Avidan, A. A. and J. Yerushalmi, “Bed Expansion in High Velocity Fluidization,” Powder Technol., 32, 223-232 (1982).
Avidan, A. A. and J. Yerushalmi, “Solid Mixing in an Expanded Top Fluid Bed,” AIChE J., 31, 835-841 (1985).
Andersson, B. A., “ Effects of Bed Particle Size on Heat Transfer in Circulating Fluidized Bed Boilers,” Powder Technol., 87, 239 (1996).
Bai, D., J. R. Grace and J. Zhu, “Characterization of Gas Fluidized Beds of Groups C, A and B Particles Based on Pressure Fluctuations,” Can. J. Chem. Eng., 77, 319 (1999).
Baskakov, A. P., B. V. Berg, O. K. Vitt, N. F. Filippovsky, V. A. Kirakosyan, J. M. Goldobin and V. K. Maskaev, “Heat Transfer to Objects Immersed in Fluidized Beds,” Powder Technol., 8, 273 (1973).

被引用紀錄


楊家福(2010)。循環式流體化床中利用小波多分辨率分析鑑識B類粒子絮狀物與絮狀物流力行為之探討〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.10385
林猷迪(2010)。以多層次解析度在循環式流體化床內鑑識B類粒子之絮狀物特性〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.02508
楊東昱(2008)。循環式流體化床中氣固流力行為之小波分析〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2008.00075
余傛斯(2007)。利用小波分析壓力擾動訊號來界定B類粒子紊流流體化流域〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.01162
陶政隆(2006)。紊流流體化床的床-壁間熱傳現象〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2006.03190

延伸閱讀