透過您的圖書館登入
IP:18.217.208.72
  • 學位論文

金屬原子與氫分子反應的位能面及類古典軌跡之研究

Quasiclassical Trajectories and ab initio Potential Energy Calculations for Some Reactions of Metal Atoms with H2

指導教授 : 林金全
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


我們使用類古典軌跡(quasiclassical trajectories method)來探討三個反應,分別是鈹ヽ鋰ヽ鈣與氫分子的化學反應。鋰和鈣金屬與氫分子的反應已經有人用雷射誘導螢光(laser-induced fluorescence)的方式,進行過詳細的研究了。我們將用理論的方式來作探討並與實驗結果來比較。首先我們建立了基態1A’跟第一激發態2A’位能面的方程式,並將方程式導入類古典軌跡的程式中,進行反應的模擬。從結果中我們可以發現這三個反應都是經由C2v的反應路徑形成產物。對於鋰和鈣的反應都形成單峰的轉動分布,而鈹的反應則是雙峰的轉動分布。我們知道鈹ヽ鎂和鈣都是同一族的金屬元素,但是由於鈣金屬比較重,因此再脫去氫原子的時候不會受到力矩的影響,而形成高轉動態的產物。因此在鈣金屬與氫分子的化學反應中,產物主要都分布在較低的轉動能階上。至於鋰原子與氫分子的反應中,如果將氫原子全激發到振動態等於1時,產物會增加約85倍左右,這結果與先前的實驗蠻接近的。對於鈹與氫分子的反應,不論氫分子的振動態在0或是1。產物的轉動分布都是雙峰的形式,最大的值分佈在N=29,另一個峰頂的位子在N=10~11。此外,單峰與雙峰的轉動分布,均是在形成[MH2]後脫去氫原子的過程差異所引起的,但是還需要考慮到是否有足夠的能量來使高轉動態的分布增加,才能看到雙峰的轉動分布。

並列摘要


We study three reaction schemes, M* + H2--> MH + H (M*=Be(21P), Li(22P), and Ca(31D)) to understand the related dynamic properties by quasiclassical trajectory calculations in this work. All of the potential energies of ground and excited state are calculated by HF/CASSCF/MRCI level of ab initio method, and analytically fitted to two new potential energy functions of 1A’ and 2A’. For all reactions, the reaction channel follows a near C2v insertion. We don’t observe any barrier energy in the Be + H2, and the rotational populations are characterized by a bimodal distribution for v=0 and v=1 of BeH product, showing one maximum component around N = 9-11, and the other one peaking at approximately N=29. For the Li + H2, when the H2 bond distance increases, the reaction rate is facilitated. Thus, the rotational population distribution is enhanced by about 85 times at H2(v=1) as compared to H2(v=0). The resulting rotational distributions of LiH are unimodal for both cases of H2(v=1) and H2(v=0). In the reaction of Ca(31D) + H2, the product rotational distribution is also unimodal. The relative angle between orbital angular momentum (l’) and rotational angular momentum (j’) is very small in this reaction, such that most rotation populations lie in the low rotational state.

參考文獻


( 8) K. C. Lin and H. C. Chang, J. Chem. Phys. 1989, 90, 6151 .
(35) Y. W. Song, J. J. Chen, M. K. Hsiao, and K. C. Lin, J. Chem. Phys., 2004, 120, 2774
(36) J. J. Chen, M. K. Hsiao, and K. C. Lin, J. Chem. Phys. 2005, 123, 12101
(34) K. H. Kim, H. S. Lee, Y. S. Lee., G. H. Jeung, J. Chem. Phys., 2002, 116, 589
( 9) Y X. Huang, J. Zhao, G. Xing, X. Wang, and R. Bersohn, J. Chem. Phys.

延伸閱讀