透過您的圖書館登入
IP:3.17.150.163
  • 學位論文

在微流體裝置上的流體可繞度研究

A Routability-Driven Flow Routing Algorithm for Programmable Microfluidic Devices

指導教授 : 李德財

摘要


生醫晶片由微機電技術製造而成並在近年受到很大的關注. 生醫晶片的優點是只需少量樣本及試劑且擁有高準確性及高反應速度. 在眾多的生醫晶片中, 最近以微流體生醫晶片最受矚目, 特別是可程式化微流體裝置. 可程式化微流體裝置不需要任何的硬體調整即可在單一晶片上執行眾多不同的反應. 隨著晶片規格的增長, 流體的繞線佈局變得越來越複雜. 傳統手動控制多數流體的方法效率不高且晶片反應的時間過長. 幸運的是可程式化微流體裝置有很高的可能性以純軟體的方式做流體的繞線佈局且克服傳統方法的缺點. 然而以純軟體去減少晶片反應時間可能會導致晶片阻塞和試劑的不當混合. 為了執行一個可行性高的試驗, 可行的程式不僅需要減少晶片反應時間也需要考量到晶片阻塞和流體限制條件的問題. 因此, 我們在可程式化微流體裝置上定義了流體繞線的問題並提出一個既考量流體限制且可減少晶片反應時間的流體可繞度演算法.

並列摘要


Biochips that are made of Micro Electro Mechanical Systems (MEMS) receive much attention in recent years. The advantages of biochips are high accuracy and fast reaction rate with only a small volume consumption of samples and reagents. Among various types of biochips, flow-based microfluidic biochips receive much attention recently, especially the programmable microfluidic device (PMD). PMDs are capable of performing multiple functions in one platform without requiring any hardware modifications. As the size of chips increases, flow routing becomes more complicated. Traditional methods to manually control multiple flows is inefficient and may not have feasible assay completion time. Fortunately, PMDs have high potential to route flows with pure software programs to overcome the drawbacks of traditional methods. However, naive software programs that simply minimize assay completion time may cause flow-congestion and unexpected mixing between different assays, i,e., fluidic constraint. To conduct a viable experiment, a feasible program should not only minimize assay completion time but also consider congestion problems and fluidic constraint. Therefore, we formulate the flow routing problem and propose a routability-driven flow routing algorithm which considers the fluidic constraint and minimizes the assay completion time on PMDs.

並列關鍵字

bioroute PMDs biochips Automation

參考文獻


[7] K.-K. Liu, R.-G. Wu, Y.-J. Chuang, H. S. Khoo, S.-H. Huang and F.-G. Tseng, "Microuidic Systems for Biosensing," Sensors, 10(7): pp. 6623-6661, 2010.
[1] Banerjee, Ananda, et al., "Programmable Electrowetting with Channels and Droplets,' Micromachines, 6(2): pp. 172-185, 2015.
[2] C. M. Fiduccia, R. M. Mattheyses "A linear time heuristic for improving network partitions' Proc. 19th IEEE Design Automation Conference, pp. 175-181, 1982.
[3] E. C. Jensen, B. P. Bhat and R. A. Mathies, "A digital microfluidic platform for the automation of quantitative biomolecular assays,' Lab on Chip, 10(6): pp. 685-691, 2010.
[4] G. T. Thorsen, S. J. Maerkl and S. R. Quake, "Microfluidic large scale integration, ' Science, 298(5593): pp. 580-584, 2002.

延伸閱讀