透過您的圖書館登入
IP:18.116.40.177
  • 學位論文

鉻和鉻氧化物的掃描探針微影蝕刻與靜電力顯微研究

Scanning probe lithography and electrostatic force microscopy study on chromium film and chromium oxide

指導教授 : 林敏聰

摘要


掃描探針微影術(scanning probe lithography, SPL)具有解析度甚佳、程序簡單、低成本、可在大氣環境中操作……等優點,也因此廣泛地被使用在奈米尺度,甚至原子尺度的表面結構之改變。本實驗是利用濺鍍(sputtering)的方式在矽基底上鍍上鉻薄膜,再使用掃描探針微影術在鉻薄膜表面上成長出氧化線與氧化點,並利用靜電力顯微鏡(electrostatic force microscopy, EFM)觀察其靜電荷分佈情形。實驗過程中會影響鉻氧化物成長的高度與半高寬(FWHM)之因素,包含氧化偏壓、氧化掃描速率、氧化時間和大氣相對溼度。從實驗結果發現,當氧化偏壓、氧化時間與大氣相對溼度逐漸增加時,鉻氧化物成長的高度與半高寬會隨之變高、變寬。若氧化掃描速率增加時,鉻氧化物成長的高度與半高寬反而隨之變小。此外,我們用靜電力顯微鏡觀察鉻氧化點的靜電荷分佈情形,發現在鉻氧化點內的靜電荷為負電荷,並且隨著鉻氧化點高度的增加而變多。

並列摘要


Scanning probe microscope has been extensively used to perform nanometer and atomic-scale modifications on a great variety of surface. The advantages of scanning probe lithography technique are its high resolution, excellent alignment accuracy, high reliability, and absence of radiation and charge damage, simpler and lower-cost in the substrate to be patterned. Nanolithography of chromium oxide nanowires and nanodots in chromium films deposited on silicon substrate are studied using atomic force microscopy (AFM) and electrostatic force microscopy (EFM). Factors that affect the height and full width at half-maximum (FWHM) of chromium oxide are bias voltage, scanning rate, writing time and relative humidity. The results indicated that as the writing time ,the bias voltage, and relative humidity increase, the nanostructure’s height and FWHM also increase. As the scanning rate increases, the height and FWHM of nanostructure decreases. Additionally, the nanodots were measured by EFM, and the experiment indicated that the charge of chromium oxide is negative. As the height of chromium oxide increases , negative charge of chromium oxide increases.

參考文獻


[1] Gordon E. Moore. Electronics, Volume 38, Number 8, April 19 (1985).
[2] G. Binning, H. Rohrer, C. Gerber and E. Weibel, Phys. Rev. Lett. 49, 57 (1983).
[6] H. Van Kempen, G. F. A. van de Walle, IBM. J. Res. Dev. 30, 509 (1986).
[9] T. R. Albercht, M. M. Dovek, M. D. Kirk, Appl. Phys. Lett., 55, 1727 (1989).
[10] J. A. Dagata, J. Schneir, H. H. Harary, Appl. Phys. Lett., 56, 2001 (1990).

延伸閱讀