透過您的圖書館登入
IP:18.188.108.54
  • 學位論文

軸孔珊瑚種間關係的探討

Interspecies relationships in Acropora (Cnidaria: Scleractinia)

指導教授 : 戴昌鳳
共同指導教授 : 陳昭倫(Chaolun Allen Chen)

摘要


軸孔珊瑚(Acropora spp.)是石珊瑚(Scleractinia)中種類數最多的一屬, 種類數多達113種以上。根據Wallace(1999)的分類可分成四大主要系群(clade)。生態上,軸孔珊瑚常為同域共存(sympatric)。生殖上,同域共存的軸孔珊瑚在進行同步集體產卵(synchronous spawning)時,可能提供種間雜交的機會,進而造成種間界定(species boundary)模糊的網狀演化( reticulate evolution )。因此,軸孔珊瑚是近十年來(1997-2006)用於探討石珊瑚藉由集體產卵可能導致雜交種化和網狀演化的主要研究對象。然而,應用分子親緣關係和族群遺傳學方法探討雜交種化、網狀演化和祖先多型性(ancestral polymorphism)的現象,仍存在模糊不清的爭議。本論文以澎湖青灣海域同域共存的四種軸孔珊瑚種為研究對象,進行種間關係的研究,用以檢驗造礁珊瑚雜交種化理論的可行性。 針對軸孔珊瑚集體產卵的有性生殖方式,本論文探討:(1)利用軸孔珊瑚集體產卵時間觀察探討生殖時間隔離(temporal isolation);(2)利用人工配子雜交實驗探討合子前隔離(prezygotic isolation);(3)依據軸孔珊瑚染色體組型(karyotype)的觀察,探討合子後隔離(postzygotic isolation)的可能性 ;及(4)重新檢視普遍被使用於探討軸孔珊瑚演化模式的核糖體轉錄區間和5.8S片段(ribosomal ITS1-5.8S-ITS2),利用親緣關係分析方法重新檢視與推論軸孔珊瑚的分子演化。 於2002至2005年,在澎湖本島的青灣內灣(23031’N;119033’E)研究美麗軸孔珊瑚(Acropora muricata)、變異軸孔珊瑚(A. valida)、桌形軸孔珊瑚(A. hyacinthus)和趾形軸孔珊瑚(A. humilis)等四種同域珊瑚的集體生殖。結果發現軸孔珊瑚的集體產卵日分佈,在不同年之間呈現不一致的現象。青灣內灣的軸孔珊瑚產卵時間為國曆的四月和五月,所記錄的產卵日分佈從月圓前七天(-7)到月圓後十天(+10)皆有。當日的產卵時間則從日落後ㄧ個半小時到四個小時。四種軸孔珊瑚呈現相似的產卵時間和日期。然而,推估種間同時產卵的機率,發現種內(珊瑚群體間)和任兩種之間的同步產卵的機率較高,而四個種間的同步產卵機率最低。此現象顯示青灣內灣的四種軸孔珊瑚產卵時間雖然相近,但每個產卵日和時間參與同步產卵的軸孔珊瑚種類不同,仍具有一些時間隔離。 在人工雜交實驗方面,青灣內灣的四種軸孔珊瑚呈現種內配子受精成功率高,而種間配子受精成功率低的現象。由種間配子不相容的狀況,表示青灣內灣的四種同域的軸孔珊瑚呈現清楚的種間界限。與前人研究軸孔珊瑚種間配子雜交成功的相關文獻比較,顯示具有較高種間雜交記錄的軸孔珊瑚物種多為Wallace(1999)依據外型特徵所分出的C系群(clade)的軸孔珊瑚。而青灣內灣的四種軸孔珊瑚中,兩種屬於A系群(趾型軸孔珊瑚和變異軸孔珊瑚)、一種屬於B系群(美麗軸孔珊瑚)、一種屬於C系群(桌型軸孔珊瑚)。 在軸孔珊瑚染色體組方面,本論文共檢視110個染色體組。結果發現青灣內灣的四種軸孔珊瑚皆擁有28個染色體。與前人所發表的石珊瑚染色體數目比較,21種軸孔珊瑚中,16種軸孔珊瑚擁有28個染色體,只有3種軸孔珊瑚呈現可能非整倍體(aneuploid)的數目(30和24)、3種軸孔珊瑚可能為多倍體(polyploidy)的數目(42、48、54)。其中,變異軸孔珊瑚(A. valida)擁有28個(青灣內灣樣本)和42個(關島樣本)兩種染色體數。另外,同科的表孔珊瑚屬(Montipora)也具有28個染色體,因此擁有28個染色體並非軸孔珊瑚屬內多倍體種化的結果。而其他具有整倍體或多倍體數目的軸孔珊瑚可能是獨立事件的結果。 在石珊瑚的核糖體片段(ITS1-5.8S-ITS2)親緣分析方面,總共取得石珊瑚12科、28屬、78種的DNA序列參與分析。在遺傳距離(p-distance)分布方面,只有軸孔珊瑚具有高度的種內遺傳距離和種間遺傳距離變異。而其他石珊瑚則呈現種間與種內相同保守的遺傳變異,或種間遺傳變異高於種內遺傳變異的情形。而在核糖體5.8S DNA序列親緣關係樹方面,軸孔珊瑚屬較其他石珊瑚具有長分支的單系群。另一方面,應用分子鐘假設(molecular-clock hypothesis)的可能性比例測試(likelihood ratio test)原理,測試珊瑚所擁用的核糖體5.8S DNA序列,呈現顯著不一致的演化速率。在更仔細的分群之下,發現軸孔珊瑚屬(包含subgenera Acropora and Isopora)呈現屬內一致的演化速率,而軸孔珊瑚屬與其他石珊瑚則呈現不一致的演化速率。因此,軸孔珊瑚核糖體片段序列相較於其他石珊瑚呈現高遺傳變異的獨特現象。 綜合本論文針對軸孔珊瑚種間關係的探討,獲得下列結論: (ㄧ)澎湖青灣內灣四種同域共存的軸孔珊瑚 ,雖然任兩種之間的同步產卵的機率較高,但四個種間的同步產卵機率最低。此現象顯示青灣內灣的四種軸孔珊瑚雖然共域且產卵時間相近,但是仍可能有時間差的生態隔離(ecological isolation)作為第ㄧ道維持種間界限的機制。 (二)雜交實驗的結果顯示,青灣內灣的四種軸孔珊瑚間即使具有同步產卵的機會,配子亦無法受精,顯示這四種珊瑚間的配子發展出可能的辨識機制,而具有合子前隔離(prezygotic isolation)第二道防線。 (三) 染色體數目的資料顯示青灣內灣軸孔珊瑚並無多倍體或非整倍體的存在,不支持在澎湖青灣海域的四種軸孔珊瑚之間有雜交種存在的可能性。 (四) 軸孔珊瑚核糖體5.8S片段呈現種內和種間高遺傳變異,此現象導致軸孔珊瑚呈現分子網狀模式(molecular reticulate pattern)的種間關係。因此核糖體5.8S片段的分子訊息不適合用於探討軸孔珊瑚種間關係。另一方面, 軸孔珊瑚屬相較於其他石珊瑚呈現快速演化的現象,也不適合用於探討石珊瑚網狀演化的可能性。 本論文中的生態與生殖證據顯示澎湖青灣內灣的軸孔珊瑚呈現清楚的種間界限,然而在分子親緣關係仍呈現不清楚的種間關係。因此建議往後探討珊瑚演化的相關機制時,必須同時考慮生態、行為、生殖和分子遺傳的證據。

並列摘要


Acropora species often coexist sympatrically and their mass-spawning behavior provides the opportunities for interspecific hybridization. The reticulate patterns of Acropora have been widely documented from 1997 to 2006 and have been used as a generalisation of reticulate history for scleractinian evolution. The possible reproductive isolations including temporal isolation of spawning time, the post-mating isolations, and the cytogenetic types were studied. In addition, the phylogenetic analyses of ribosomal internal transcribed spacer (ITS) and 5.8S gene region were conducted to deduce the reticulate evolutionary history. Four sympatric Acropora corals, including A. muricata, A. valida, A. hyacinthus, and A. humilis, were studied in the Chinwan Inner Bay, Penghu Islands from 2002 to 2005. The spawning dates of Acropora are highly variable among years and months, ranging from 7 days before full moon to 10 days after full moon. Major spawning peaks can be splitted on April or May. Within the spawning days, field monitoring indicated an overlapping in spawning time among these four species in the Chinwan Inner Bay, suggesting synchronously spawning occurred. On the other side, the four Acropora species shared some overlapping in spawning days and spawning time in Chinwan Inner Bay. However, the probabilities of synchronization showed that synchrony mainly occurred within species and between two species. Cross experiments showed very low or none interspecific hybridization among species, indicating gametic incompatibilities and prezyotic isolation existed. Cytogenetic typing showed the chromosome numbers were 28 in developed coral larvae for all the four Acropora species. For the molecular phylogenetic analysis, I examined the molecular evolution of the internal transcribed spacers (ITS) and 5.8S rDNA sequences from 78 species, representing 28 genera, and 12 families of scleractinian corals. Genetic distances (measured by p-distances) and frequency distribution analyses revealed that both extremely high intra- and interspecific heterogeneity of the ITS-5.8S rDNA were specific to the Acropora. The 5.8S rDNA phylogeny clearly showed a significantly long branch length leading to the cluster of Acropora. The molecular-clock hypothesis tested by likelihood ratio test indicated a highly significant difference in global evolutionary rate for scleractinian 5.8S rDNA. The relative rate tests showed that Isopora, Caribbean Acropora, and Indo-Pacific Acropora evolved at constant tempos in their rDNA, indicating that highly divergent rDNA persisted in Acropora before splitting into these three lineages. In contrast, rate constancy was rejected in most of comparisons between Acropora/ Isopora and other coral genera, suggesting that the rates of evolution of 5.8S differed between Acropora/ Isopora and other lineages, and the evolutionary rate of Acropora/ Isopora was accelerated after divergence from the common ancestor of scleractinian corals. In summary, I have applied the BSC to examine the species boundary of symatric Acropora corals which spawned relatively synchronous in their reproductive seasons. Strong prezygotic isolation existed among Acropora suggested that a gamete recognition system could have operated the incomparability of sperm and egg interaction during mass spawning events the corals in Chinwan Inner Bay, Penghu. In addition, revisiting the molecular phylogenetic analysis of ITS clearly showed the high heterogeneity of rDNA is a unique feature of Acropora. Thus using this unique case to conclude the reticulate evolution as a general pattern of scleractinain corals should be cautious. The unusual heterogeneous rDNA characteristics might be applied to the whole nuclear genome of Acropora, and thus deductions of species boundary based on molecular markers are still far from completed. Under this circumstance, ecological and reproductive examinations based on the BSC criterion continue to be an effective approach to delineate the species boundary in corals. Although debates of reticulate evolution in scleractinian corals remain unsettled, future applications of ecological, behavioral, reproductive, and molecular genetics are still to be the coordinated approaches to reveal the evolutionary mechanism of coral speciation.

參考文獻


Alverez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417-434.
Avise JC (2004) Molecular markers, natural history, and evolution, 2nd ed. Sinauer, Sunderland, Massachusetts, USA.
Babcock RC, Bull GD, Harrison PL, Heyward AJ, Oliver JK, Wallace CC, Willis BL (1986) Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar Biol 90:379-394.
Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phyl Evol 1:3-16.
Buckler ES IV, Holtford TP (1996) Zea systematics: ribosomal ITS evidence. Mol Biol Evol 13:612-622.

延伸閱讀