透過您的圖書館登入
IP:54.166.200.255
  • 學位論文

可撓式電致變色元件之噴墨混色與圖樣化研究

Printed Multi-Color High-Contrast Flexible Electrochromic Devices

指導教授 : 廖英志
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文利用一種簡單且迅速的噴墨直寫技術來製作多色彩可撓曲式圖樣化電致變色元件。此元件係利用一種電致變色超分子聚合物 (Metallo-supramolecular polymers, MEPE) 製成,相較於傳統電致變色材料,MEPE具有高對比度、高穩定性及高著色效率等特性。由於此聚合物為水溶性,因此可將其製作成墨水,並利用噴墨技術直接噴塗於導電基材上。 首先,為了製作出平整且緻密的變色材料薄膜,使用不同的液滴排列並探討其對薄膜樣態的影響。找出均勻噴塗的方式後,在透明導電基材ITO-PEN上製作薄膜並以循環伏安法及光譜儀測量其電化學與光學性質。與先前之文獻做比較,電致變色材料薄膜之吸收峰值與氧化還原電位並無因不同製程而改變。印製而成的變色薄膜接著與固態電解質搭配,組合成可撓曲式電致變色元件。此電解質是由高沸點之非揮發性離子液體 (EMIBTI) 與高分子 (PVDF-HFP) 製作而成。當改變施加的電壓時 (-3.0~3.0 V),此元件可在兩秒鐘內著色並具有相當高的對比度以及著色效率。在580 nm之波長下,其穿透度變化為40.1%並且具有445 cm2C-1之高著色效率。當此元件彎曲時,其穿透度變化仍可達30.1%且著色時間不變,是相當好的展現。 接著,利用噴墨技術將兩種不同顏色之MEPE混合成一系列不同顏色以及圖樣化之電致變色薄膜。同樣地,利用光譜儀及循環伏安法探討混合後之特性。可發現兩者之吸收光譜會線性疊加,進而顯現不同的顏色。與先前文獻使用合成調整顏色不同的是:藉由噴墨技術混合的變色薄膜,其氧化還原電位並不會因兩種金屬離子的交互作用而偏移。最後,本論文利用噴墨技術可在不需遮罩的情形下精確噴印出所設計的圖樣之特點,搭配兩種變色材料製作圖樣化之電致變色元件,為此製程在軟性顯示器的應用提供進一步的可能性。

並列摘要


In this thesis, multi-colored electrochromic (EC) thin film devices were prepared by a direct-writing method. Metallo-supramolecular polymers (MEPE) solutions with two primary colors were inkjet-printed digitally on flexible electrodes. Uniform EC thin films are fabricated via inkjet printing. Further, by digitally controlling print dosages of each species, colors of the printed EC thin film patterns can be adjusted directly without pre-mixing or synthesizing new materials. The printed EC thin films were then laminated with a solid transparent thin film electrolyte and a transparent conductive thin film to form an electrochromic device (ECD). After applying a DC voltage, the printed ECDs exhibited a great contrast with a transmittance change (ΔT) of 40.1% and a high coloration efficiency of 445 cm2C-1 at 580 nm within a short darkening time of 2 s. The flexible ECDs can also be made base on ITO-PEN and showed same darkening time of 2 s and still have a high ΔT of 30.1% under bending condition. In summary, this study demonstrated the feasibility to fabricate display devices with different color set up by all-solution process, and can be further extended to other types of displays.

參考文獻


1. Carlson, D.E. and C.R. Wronski, Amorphous silicon solar cell. Applied Physics Letters, 1976. 28(11): p. 671-673.
2. Burroughes, J., et al., Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539-541.
3. Jin, D.U., et al. 65.2: Distinguished Paper: World‐Largest (6.5”) Flexible Full Color Top Emission AMOLED Display on Plastic Film and Its Bending Properties. in SID Symposium Digest of Technical Papers. 2009. Wiley Online Library.
4. Weisfield, R.L., et al. New amorphous-silicon image sensor for x-ray diagnostic medical imaging applications. 1998.
6. Clemens, W., et al., From polymer transistors toward printed electronics. Journal of Materials Research, 2004. 19(07): p. 1963-1973.

延伸閱讀