透過您的圖書館登入
IP:3.144.252.140
  • 學位論文

利用原子層沉積技術製備石墨烯成長碳源之研究

Preparation of Carbon Source for the Growth of Graphene by Using Atomic Layer Deposition

指導教授 : 陳敏璋

摘要


本實驗改善文獻上無需轉印石墨烯(Transfer-free Graphene)的方法,改變自組裝單分子薄膜(Self-Assembled Monolayers, SAMs)沉積方式,並利用化學氣相沉積(Chemical Vapor Deposition, CVD)製作石墨烯的原理,最終使石墨烯直接成長於基材上。以SAMs代替CVD碳源,除了在製程上不用考慮氣體混合均勻性,SAMs作為固態碳源更可控制單位面積的碳原子數,並使石墨烯位於基材及金屬催化層之界面成長,因此無須轉印製程可直接後續製程。實驗分析主要利用表面增強拉曼散射(Surface-Enhanced Raman Scattering, SERS),在石墨烯表面鍍上奈米銀顆粒,以利於分析。研究發現,鎳金屬催化層的鍍率對熱處理後的金屬平整度,以及石墨烯的品質,有很大的影響;並且發現可利用鎳金屬層厚度可控制固溶的碳含量。另外移除鎳金屬蝕刻液的選用及基材的選擇,對石墨烯品質亦有很大的影響。

並列摘要


A transfer-free, direct growth of graphene on oxide surface by self-assembled monolayers (SAMs) was developed. Instead of the conventional CVD carbon sources, a SAMs was used as a new carbon source for preparing graphene. It is facial to control surface carbon density by using SAMs as a solid state carbon source substituting for those used in conventional CVD. The Ag nanoparticles were used to enhance the intensity of Raman spectroscopy from graphene due to the surface-enhanced Raman scattering (SERS) mechanism. We found that the roughness of nickel metal catalyst layer after annealing was significantly affected by the deposition rate. In addition, the thickness of nickel metal catalyst layer could be used to control the carbon content of the solid solution. Furthermore, the quality of graphene was influenced by the selection of metal etching solution and the oxide substrate.

參考文獻


[1] Peng, Z.W., et al., Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel. Acs Nano, 2011. 5(10): p. 8241-8247.
[2] Shin, H.J., et al., Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv Mater, 2011. 23(38): p. 4392-7.
[3] Su, C.Y., et al., Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett, 2011. 11(9): p. 3612-6.
[4] Puurunen, R.L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics, 2005. 97(12): p. 121301.
[5] Knez, N.P.a.M., Atomic Layer Deposition of Nanostructured Materials. 2011: Wiley-VCH Verlag GmbH & Co. KGaA.

延伸閱讀