透過您的圖書館登入
IP:3.145.60.149
  • 學位論文

台灣地區常見植物排放異戊二烯之研究

Study on Isoprene Emission from Popular Plants in Taiwan

指導教授 : 孫岩章

摘要


本研究主要利用較為簡便而迅速的異戊二烯採樣及分析方法,針對台灣常見的部分植物進行異戊二烯排放情形檢測工作。在植物排放異戊二烯之採樣上,係採用聚丙烯全透明塑膠袋圍封法,對欲檢測的植株直接進行全株或部分枝條之套袋圍封。在異戊二烯之分析上,係選用Se-30層析管柱搭配火焰離子化檢知器進行。 經檢測41種植物後,發現計有垂榕、印度橡膠樹、麵包樹、楓香、水黃皮、印度黃壇、白千層、蓮霧及芒果等9種植物具有相對較高的異戊二烯排放量。其中,垂榕、印度橡膠樹、麵包樹屬於桑科,楓香屬於金縷梅科,水黃皮、印度黃檀屬於豆科,白千層、蓮霧屬於桃金孃科,芒果屬於漆樹科。建議這些高異戊二烯排放植物不宜列為環保或景觀植物,而在都會地區更新樹種或推廣造林時,宜僅量避免選種此9種植物。另外,在選種此9種植物的同科或同屬植物之前,宜先進行異戊二烯排放檢測,確認無異戊二烯排放疑慮後再行種植。 進一步選擇印度橡膠樹、印度黃檀及楓香三種植物進行異戊二烯排放率研究。將三種植物的全株或部分枝條以聚丙烯塑膠袋圍封後置入植物清淨生態箱中,以6,300 lux之三波光照射1小時後,計算三種植物的異戊二烯排放率分別為12、15、32 μg/g/h。 在光質對異戊二烯之排放影響方面,選取楓香及印度黃檀進一步探討紅光、黃光、綠光及藍光等四種不同色光對其排放異戊二烯之影響,並以低排放力之茄苳作為對照。結果顯示四種光皆可促使楓香及印度黃檀排放異戊二烯,但以紅光的效率最佳,藍光其次,黃光再其次,而綠光之效率最差。而四種光皆無法促使茄苳排放異戊二烯。研判因紅光及藍光係植物行光合作用所需之主要色光,可促進植物行光合作用之速率,而異戊二烯之生成與排放與光合作用速率有關,因而促進異戊二烯之排放。 嘗試在前述9種具高異戊二烯排放力之植物下風區直接以氣密式針筒抽取大氣中之氣體進行GC-FID分析,結果皆無法檢測出GC-FID儀器可判讀之異戊二烯濃度,但有疑似波峰出現。此外,分析圖譜上皆可出現乙烯之分析波峰。這些結果顯示台北地區大氣中異戊二烯的濃度要比乙烯為低,其原因應是乙烯的主要排放源為汽機車及石化工廠,而異戊二烯的主要排放源僅為植物。 關鍵字:生物源揮發性有機物、異戊二烯

並列摘要


The aim of this research was to detect isoprene emission from common plants in Taiwan by simplified isoprene sampling and analyzing method. A PP plastic bag enclosure method in combination with a GC-FID instrument installed with a Se-30 packing column was adopted in this study to quickly detect the plant gas emission. Totally 41 plant species are screened for their emission. Among them, nine species were found to be isoprene emitters. They are, white bark fig(Ficus benjamina), rubber plant(Ficus elastica), bread fruit tree(Artocarpus altilis), Formosan sweet gum (Liquidambar formosana), poongaoil (Pongamia pinnata), sisso tree (Dalbergia sissoo), paper-bark tree (Melaleuca leucadendron), wax apple (Syzygium samarangense), and mango (Mangifera indica). The nine plant species are not suggested to be planted in the urban areas. They may emit a lot of biogenic volatile organic compounds that will increase the ambient ozone. Isoprene emission rate was also measured for rubber plant, sisso tree and Formosan sweet gum. Their emission rates in the ecosystem tank under high density of 6,300 lux were 12, 15, and 32 ug/g/h. The effect of different light on isoprene emission is also studied in the ecosystem tank. Results show that all 4 colors of light including red, yellow, green and blue, can cause isoprene emission on Formosan sweet gum and sisso tree, but the efficiencies are different. The emission rates are ranked by: red>blue>yellow>green. No isoprene is emitted from red cedar(Bischofia javanica)no matter what color of light is used. The reason of different light’s effect seems to be associated with photosynthesis. Since red and blue light is more essential for photosynthesis, they can induce more isoprene production and emission. The ambient isoprene concentration behind the high emission plants was also measured. Results show that none was detectable at 0, 1, and 3 meters downwind the nine isoprene emitters. These results suggest that isoprene concentration is not as high as ethylene in Taipei area. Key words:biogenic volatile organic compound, isoprene

參考文獻


9. Arey, J. 1990 Terpenes emitted from agricultural species found in California’s central valley. J. Geophys. Res. 96: 9329-9336.
11. Benjamin, M. T., Sudol, M., Bloch, L., and Winer, A. M. 1996 Low-emitting urban forests: A taxonomic methodology for assigning isoprene and monoterpene emission rate. Atmosph. Environ. 30: 1437-1452.
12. Chameides, W., Lindsay, R., Richardson, J., and Kiang C. 1988 The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science 241: 1473-1475.
13. Crutzen, P. 1979 The role of NO and NO2 in the chemistry of the troposphere and the stratosphere. Ann. Rev. Ear. Plan. Sci. 7: 443-472.
14. Evans, R. C. Tingey, D. T., Gumpertz, M. L., and Burns, W. F. 1982 Estimates of isoprene and monoterpene emission rates in plants. Bot. Gaz. 143: 304-310.

被引用紀錄


彭永良(2006)。常見綠化植栽異戊二烯生成因子之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2006.02365

延伸閱讀