透過您的圖書館登入
IP:3.129.45.92
  • 學位論文

基於SOPC之人形機器人的步態行走與馬達回授偵測

SOPC-based Walking Gait and Motor Feedback Detection for Humanoid Robots

指導教授 : 鄭吉泰

摘要


本論文實現一個人形機器人行走步態於FPGA系統平台上。在行走步態上,本論文使用正弦函數來描述雙足行走步態的公式,為了方便定義其振盪器參數,本論文選擇以機器人腰部擺動長度、步伐長度、抬腳高度以及行走時間作為參數設定,即可設計出所需要的步態軌跡,再利用逆運動學求得步態軌跡與馬達的關係。本論文將步態軌跡與逆運動學以Nios II軟體、浮點運算器(Floating Point)與FPGA硬體電路來實現與比較。在FPGA硬體電路中,以座標旋轉數位計算器(CORDIC)實現根號、三角與反三角函數的計算,只需要加減法、移位與少量的記憶體即可實現。將步態軌跡與逆運動學在FPGA硬體電路實現,可讓Nios II軟體能有更多的資源執行影像、策略以及智慧型演算法等功能。因此,本論文將行走步態從IPC中完整移植進入FPGA硬體電路,最後再加入馬達回授的機制來查看人形機器人的馬達狀態。

關鍵字

人形機器人 FPGA CORDIC 行走步態

並列摘要


In this thesis, a design method of walking gait for humanoid robots based on FPGA is proposed. In the walking gait, some equations represented by sinusoidal functions are proposed to describe. In order to be more convenient to set the parameter, oscillation parameters are described by the swing length, step length, and lifting height of a humanoid robot. We use Nios II, Floating Point and FPGA to implement walking gait and inverse kinematics. Due to CORDIC algorithm only needs addition and subtraction, displacement, and mininal memory for calculating the square-root, trigonometric, and inverse trigonometric functions. From the experimental results, FPGAs are capable of high-performance parallel computing, the computational burden of IPC can be greatly reduced. Let master controller can execute strategic, image processing, intelligent algorithms, etc. Therefore, moving walking gait from IPC to FPGA is proposed in this thesis and motor feedback detection is added to detect the motor state.

並列關鍵字

Humanoid robot FPGA CORDIC Walking Gait

參考文獻


[16] 陳立峰,基於手部運動之人形機器人平衡控制,淡江電機工程學系碩士論文,2013
[2] Y.T. Su, K.Y. Chong, and T.H.S. Li, “Design and implementation of fuzzy policy gradient gait learning method for walking pattern generation of humanoid robots,” International Journal of Fuzzy Systems, vol. 13, no. 4, 2011, pp. 369–382.
[9] C.C. Wong, C.T. Cheng, K.H. Huang, and Y.T. Yang, “Fuzzy control of humanoid robot for obstacle avoidance,” International Journal of Fuzzy Systems, vol. 10, no. 1, 2008, pp. 261–270.
[17] 劉智誠,小型人形機器人之及時行走的SOPC設計與實現,淡江大學電機工程學系博士論文,2014
[1] J. Perry, Gait Analysis: Normal and Pathological Function, Downey, CA: Rancho Los Amigos Medical Center, 1992.

延伸閱讀